在设置卫星上的时钟时,既要考虑到广义相对论,也要考虑到狭义相对论的影响。这两种相对论的效果会部分地相互作用,不过不会完全抵消。根据广义相对论,一束在一个重力场中向下下落的光的频率会变高(蓝光推移);而一束上升的光的频率则会变低(红光推移)。卫星时钟显示的时间会通过原子的振荡频率描述出来。由于在20000公里的高度上的重力只有在地球上的大约四分之一,因此人们在地面上会接收到一个更高的频率:重力越小,也就是说距离地球越远,时钟走得就会越快。在GPS卫星上,时间会缩短大约一千亿分之五十三。这样,一个卫星时钟每年就要少走大约千分之十七秒。
由于狭义相对论,这个数值会变小一些。因为没有任何物体的运动速度能超过光速,所以在运动的坐标系中的时间就会走得慢一些。当一束光从一个运动的发射装置中发射出去并被一个静止的接收器接收到时,这束光的频率就会变低。这个所谓的时间膨胀(Zeitdilation)会让以每秒大约4公里的速度围绕地球飞速旋转的卫星上的时钟走得慢一些。具体来说,这些时钟会变慢大约一千亿分之八,也就是每年大约变慢千分之三秒。
现在,为了校正相对论造成的影响,GPS卫星上的时钟必须变慢大约一千亿分之四十五。经过爱因斯坦的相对论比较,这非常简单:不要把卫星上的时钟精确地调整为1023万赫兹(ghost注:原文如此,应当是1023兆赫兹),而是把这个数值设置为1022.9999995326赫兹(ghost注:原文有误,这里应当为兆赫)。如果没有这个校准过程,在每秒钟的长度测定中就会出现480米的误差。
欢迎光临 Chinaunix (http://bbs.chinaunix.net/) | Powered by Discuz! X3.2 |