今天进入《Linux设备驱动程序(第3版)》第三章字符设备驱动程序的学习。
这一章主要通过介绍字符设备scull(Simple Character Utility for Loading Localities,区域装载的简单字符工具)的驱动程序编写,来学习Linux设备驱动的基本知识。scull可以为真正的设备驱动程序提供样板。
--------------------------------------------------------------------------------
一、主设备号和此设备号
主设备号表示设备对应的驱动程序;次设备号由内核使用,用于正确确定设备文件所指的设备。
内核用dev_t类型()来保存设备编号,dev_t是一个32位的数,12位表示主设备号,20为表示次设备号。
在实际使用中,是通过中定义的宏来转换格式。
(dev_t)-->主设备号、次设备号 MAJOR(dev_t dev)
MINOR(dev_t dev)
主设备号、次设备号-->(dev_t) MKDEV(int major,int minor)
建立一个字符设备之前,驱动程序首先要做的事情就是获得设备编号。其这主要函数在中声明:
int register_chrdev_region(dev_t first, unsigned int count, char *name);
//指定设备编号。first:是要分配的设备编号范围的起始值。first的此设备号经常置为0。count是所请求的连续设备编号的个数。name是和该编号范围关联的设备名称,它将出现在/proc/devices和sysfs中。
int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, unsigned int count, char *name);
//动态生成设备编号。dev是仅用于输出的参数,在成功完成调用后将保存已分配范围的第一个编号。firstminor应该是要使用的被请求的第一个此设备号,它通常为0。count和name参数与register_chrdev_region函数的一样。
void unregister_chrdev_region(dev_t first, unsigned int count); //释放设备编号
分配之设备号的最佳方式是:默认采用动态分配,同时保留在加载甚至是编译时指定主设备号的余地。
以下是在scull.c中用来获取主设备好的代码:
if (scull_major) {
dev = MKDEV(scull_major, scull_minor);
result = register_chrdev_region(dev, scull_nr_devs, "scull");
} else {
result = alloc_chrdev_region(&dev, scull_minor, scull_nr_devs,"scull");
scull_major = MAJOR(dev);
}
if (result 。
--------------------------------------------------------------------------------
三、字符设备的注册
内核内部使用struct cdev结构来表示字符设备。在内核调用设备的操作之前,必须分配并注册一个或多个struct cdev。代码应包含,它定义了struct cdev以及与其相关的一些辅助函数。
注册一个独立的cdev设备的基本过程如下:
1、为struct cdev 分配空间(如果已经将struct cdev 嵌入到自己的设备的特定结构体中,并分配了空间,这步略过!)
struct cdev *my_cdev = cdev_alloc();
2、初始化struct cdev
void cdev_init(struct cdev *cdev, const struct file_operations *fops)
3、初始化cdev.owner
cdev.owner = THIS_MODULE;
4、cdev设置完成,通知内核struct cdev的信息(在执行这步之前必须确定你对struct cdev的以上设置已经完成!)
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
从系统中移除一个字符设备:void cdev_del(struct cdev *p)
以下是scull中的初始化代码(之前已经为struct scull_dev 分配了空间):
/*
* Set up the char_dev structure for this device.
*/
static void scull_setup_cdev(struct scull_dev *dev, int index)
{
int err, devno = MKDEV(scull_major, scull_minor + index);
cdev_init(&dev->cdev, &scull_fops);
dev->cdev.owner = THIS_MODULE;
dev->cdev.ops = &scull_fops; //这句可以省略,在cdev_init中已经做过
err = cdev_add (&dev->cdev, devno, 1);
/* Fail gracefully if need be 这步值得注意*/
if (err)
printk(KERN_NOTICE "Error %d adding scull%d", err, index);
}
早期的办法:
注册一个字符设备驱动程序的经典方式是:
int register_chrdev(unsigned int major, const char *name, struct file_operations *fpos);
这里major是设备的主设备号,name是驱动程序的名称(出现在/proc/devices中),而fpos是默认的file_operations结构。对其调用将为给定的主设备号注册0~255作为此设备号,并为每个设备建立一个对应的默认cdev结构。
其对应的删除设备函数为:
int unregister_chrdev(unsigned int major, const char *name);
major和name必须与传递给register_chrdev函数的值保持一致,否则该调用会失败。
以下是scull模型的结构体:
/*
* Representation of scull quantum sets.
*/
struct scull_qset {
void **data;
struct scull_qset *next;
};
struct scull_dev {
struct scull_qset *data; /* Pointer to first quantum set */
int quantum; /* the current quantum size */
int qset; /* the current array size */
unsigned long size; /* amount of data stored here */
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */
};
scull驱动程序引入了两个Linux内核中用于内存管理的核心函数,它们的定义都在: void *kmalloc(size_t size, int flags);
void kfree(void *ptr);
以下是scull模块中的一个释放整个数据区的函数(类似清零),将在scull以写方式打开和scull_cleanup_module中被调用:
int scull_trim(struct scull_dev *dev)
{
struct scull_qset *next, *dptr;
int qset = dev->qset; /* 量子集中量子的个数*/
int i;
for (dptr = dev->data; dptr; dptr = next) { /* 循环scull_set个数次,直到dptr为NULL为止。*/
if (dptr->data) {
for (i = 0; i data);/* 释放其中一个量子的空间*/
kfree(dptr->data);/* 释放当前的scull_set的量子集的空间*/
dptr->data = NULL;/* 释放一个scull_set中的void **data指针*/
}
next = dptr->next; /* 准备下个scull_set的指针*/
kfree(dptr) ; /* 释放当前的scull_set*/
}
dev->size = 0; /* 当前的scull_device所存的数据为0字节*/
dev->quantum = scull_quantum;/* 初始化一个量子的大小*/
dev->qset = scull_qset;/* 初始化一个量子集中量子的个数*/
dev->data = NULL;/* 释放当前的scull_device的struct scull_qset *data指针*/
return 0;
}
以下是scull模块中的一个沿链表前行得到正确scull_set指针的函数,将在read和write方法中被调用:
/*Follow the list*/
struct scull_qset *scull_follow(struct scull_dev *dev, int n)
{
struct scull_qset *qs = dev->data;
/* Allocate first qset explicitly if need be */
if (! qs) {
qs = dev->data = kmalloc(sizeof(struct scull_qset), GFP_KERNEL);
if (qs == NULL)
return NULL; /* Never mind */
memset(qs, 0, sizeof(struct scull_qset));
}
/* Then follow the list */
while (n--) {
if (!qs->next) {
qs->next = kmalloc(sizeof(struct scull_qset), GFP_KERNEL);
if (qs->next == NULL)
return NULL; /* Never mind */
memset(qs->next, 0, sizeof(struct scull_qset));
}
qs = qs->next;
continue;
}
return qs;
}
其实这个函数的实质是:如果已经存在这个scull_set,就返回这个scull_set的指针。如果不存在这个scull_set,一边沿链表为scull_set分配空间一边沿链表前行,直到所需要的scull_set被分配到空间并初始化为止,就返回这个scull_set的指针。