- 论坛徽章:
- 0
|
/********************************************
*Created By: Prometheus
*Date : 2009-5-19
********************************************/
/*
* linux/fs/locks.c
*
* Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
* Doug Evans, 92Aug07, dje@sspiff.uucp.
*
* FIXME: two things aren't handled yet:
* - deadlock detection/avoidance (of dubious merit, but since it's in
* the definition, I guess it should be provided eventually)
* - mandatory locks (requires lots of changes elsewhere)
*
* Edited by Kai Petzke, wpp@marie.physik.tu-berlin.de
*/
#include
#include
#include
#include
#include
#include
//2G大小
#define OFFSET_MAX ((off_t)0x7fffffff) /* FIXME: move elsewhere? */
static int copy_flock(struct file *filp, struct file_lock *fl, struct flock *l,
unsigned int fd);
static int conflict(struct file_lock *caller_fl, struct file_lock *sys_fl);
static int overlap(struct file_lock *fl1, struct file_lock *fl2);
static int lock_it(struct file *filp, struct file_lock *caller, unsigned int fd);
static struct file_lock *alloc_lock(struct file_lock **pos, struct file_lock *fl,
unsigned int fd);
static void free_lock(struct file_lock **fl);
static struct file_lock file_lock_table[NR_FILE_LOCKS]; /*64个锁*/
static struct file_lock *file_lock_free_list;
/*
* Called at boot time to initialize the lock table ...
*/
void fcntl_init_locks(void)
{
struct file_lock *fl;
/*这里是在启动的时候初始化中被调用的,首先将前面的63个锁构成
*链表的结构*/
for (fl = &file_lock_table[0]; fl fl_next = fl + 1;
fl->fl_owner = NULL;
}
/*最后的一个锁的初始化操作*/
file_lock_table[NR_FILE_LOCKS - 1].fl_next = NULL;
file_lock_table[NR_FILE_LOCKS - 1].fl_owner = NULL;
/*空闲锁的链表*/
file_lock_free_list = &file_lock_table[0];
}
// struct flock {
// short l_type; //F_RDLCK(共享锁) 、F_WRLCK(排他锁)和 F_UNLCK(删除之前建立的锁)
// short l_whence; //SEEK_SET、SEEK_CUR 或 SEEK_END
// off_t l_start;
// off_t l_len; //如果是正数,锁的范围就是start~start+len-1,如果是0就表示从start到文件的结尾
// pid_t l_pid; // /* PID of process blocking our lock(F_GETLK only) */
// };
//用于 F_GETLK,一般是用于在加锁之前的检测而不是实际的进行加锁操作
//看 l 指向的一个锁结构是否同已经被加的锁相冲突,如果是
//冲突就将原先的所复制到 l 指向的空间中
int fcntl_getlk(unsigned int fd, struct flock *l)
{
int error;
struct flock flock;
struct file *filp;
struct file_lock *fl,file_lock;
if (fd >= NR_OPEN || !(filp = current->filp[fd]))
return -EBADF;
error = verify_area(VERIFY_WRITE,l, sizeof(*l));
if (error)
return error;
/*数据传输方向flock f_inode->i_flock; fl != NULL; fl = fl->fl_next) {
//这里表示冲突,就将冲突的锁的信息复制到参数指向的空间中进行返回
if (conflict(&file_lock, fl)) {
flock.l_pid = fl->fl_owner->pid;
flock.l_start = fl->fl_start;
flock.l_len = fl->fl_end == OFFSET_MAX ? 0 : //这里的0体现出来了吧
fl->fl_end - fl->fl_start + 1;
flock.l_whence = fl->fl_whence;
flock.l_type = fl->fl_type;
memcpy_tofs(l, &flock, sizeof(flock));
return 0;
}
}
/*这里没有冲突了,然后将锁类型设置为F_UNLCK并复制返回
*表示原先的锁的类型是可以上锁的哦*/
flock.l_type = F_UNLCK;
memcpy_tofs(l, &flock, sizeof(flock));
return 0;
}
/*
* This function implements both F_SETLK and F_SETLKW.
*/
//设置 l 指定的文件锁,前者如果设置失败就返回错误;而后者如果不能
//设置就进入睡眠等待,直到这个锁可用为止
int fcntl_setlk(unsigned int fd, unsigned int cmd, struct flock *l)
{
int error;
struct file *filp;
struct file_lock *fl,file_lock;
struct flock flock;
/*
* Get arguments and validate them ...
*/
if (fd >= NR_OPEN || !(filp = current->filp[fd]))
return -EBADF;
error = verify_area(VERIFY_WRITE, l, sizeof(*l));
if (error)
return error;
memcpy_fromfs(&flock, l, sizeof(flock));
if (!copy_flock(filp, &file_lock, &flock, fd))
return -EINVAL;
switch (file_lock.fl_type) { //锁的类型和访问方式进行匹配
case F_RDLCK :
if (!(filp->f_mode & 1))
return -EBADF;
break;
case F_WRLCK :
if (!(filp->f_mode & 2))
return -EBADF;
break;
case F_SHLCK :
if (!(filp->f_mode & 3))
return -EBADF;
file_lock.fl_type = F_RDLCK;
break;
case F_EXLCK :
if (!(filp->f_mode & 3))
return -EBADF;
file_lock.fl_type = F_WRLCK;
break;
case F_UNLCK :
break;
}
/*
* Scan for a conflicting lock ...
*/
if (file_lock.fl_type != F_UNLCK)
{
repeat:
for (fl = filp->f_inode->i_flock; fl != NULL; fl = fl->fl_next)
{
if (!conflict(&file_lock, fl))
continue;
/*
* File is locked by another process. If this is
* F_SETLKW wait for the lock to be released.
* FIXME: We need to check for deadlocks here.
*/
//这里表示锁有冲突,就需要根据锁的类型来看看是否等待了
if (cmd == F_SETLKW)
{
if (current->signal & ~current->blocked)
return -ERESTARTSYS;
interruptible_sleep_on(&fl->fl_wait);
if (current->signal & ~current->blocked)
return -ERESTARTSYS;
goto repeat;
}
return -EAGAIN;
}
}
/*
* Lock doesn't conflict with any other lock ...
*/
return lock_it(filp, &file_lock, fd);
}
/*
* This function is called when the file is closed.
*/
void fcntl_remove_locks(struct task_struct *task, struct file *filp,
unsigned int fd)
{
struct file_lock *fl;
struct file_lock **before;
/* Find first lock owned by caller ... */
before = &filp->f_inode->i_flock;
//这里需要看看C语言的短路求解了,这里的目的就是要找到
//对应的进程的指定的文件的锁结构
while ((fl = *before) && (task != fl->fl_owner || fd != fl->fl_fd))
before = &fl->fl_next;
/* The list is sorted by owner and fd ... */
//对这个进程的特定文件的所有锁进行释放
while ((fl = *before) && task == fl->fl_owner && fd == fl->fl_fd)
free_lock(before);
}
/*
* Verify a "struct flock" and copy it to a "struct file_lock" ...
* Result is a boolean indicating success.
*/
//将l类型的锁复制到fl中,并使得当前进程获得fl锁
static int copy_flock(struct file *filp, struct file_lock *fl, struct flock *l,
unsigned int fd)
{
off_t start;
//开头进行了很多的检测操作
if (!filp->f_inode) /* just in case */
return 0;
if (!S_ISREG(filp->f_inode->i_mode))
return 0;
if (l->l_type != F_UNLCK && l->l_type != F_RDLCK && l->l_type != F_WRLCK
&& l->l_type != F_SHLCK && l->l_type != F_EXLCK)
return 0;
switch (l->l_whence) {
case 0 /*SEEK_SET*/ : start = 0; break;
case 1 /*SEEK_CUR*/ : start = filp->f_pos; break;
case 2 /*SEEK_END*/ : start = filp->f_inode->i_size; break;
default : return 0;
}
if ((start += l->l_start) l_len fl_type = l->l_type;
fl->fl_start = start; /* we record the absolute position */
fl->fl_whence = 0; /* FIXME: do we record {l_start} as passed? */
if (l->l_len == 0 || (fl->fl_end = start + l->l_len - 1) fl_end = OFFSET_MAX; //len=0
fl->fl_owner = current;
fl->fl_fd = fd;
fl->fl_wait = NULL; /* just for cleanliness */
return 1;
}
/*
* Determine if lock {sys_fl} blocks lock {caller_fl} ...
*/
static int conflict(struct file_lock *caller_fl, struct file_lock *sys_fl)
{
//同一个锁结构
if ( caller_fl->fl_owner == sys_fl->fl_owner
&& caller_fl->fl_fd == sys_fl->fl_fd)
return 0;
if (!overlap(caller_fl, sys_fl))
return 0;
switch (caller_fl->fl_type) {
case F_RDLCK :
return sys_fl->fl_type != F_RDLCK; //如果后者也是读锁,这里是0表示冲突
case F_WRLCK :
return 1; /* overlapping region not owned by caller */
}
return 0; /* shouldn't get here, but just in case */
}
//检测两个锁的锁区域是否有重叠
static int overlap(struct file_lock *fl1, struct file_lock *fl2)
{
//这个很容易把人弄晕的,反过来看
// !(fl1->fl_endfl_start || fl2->fl_endfl_start),呵呵
return fl1->fl_end >= fl2->fl_start && fl2->fl_end >= fl1->fl_start;
}
/*
* Add a lock to a file ...
* Result is 0 for success or -ENOLCK.
*
* We merge adjacent locks whenever possible.
*
* WARNING: We assume the lock doesn't conflict with any other lock.
*/
/*
* Rewritten by Kai Petzke:
* We sort the lock list first by owner, then by the starting address.
*
* To make freeing a lock much faster, we keep a pointer to the lock before the
* actual one. But the real gain of the new coding was, that lock_it() and
* unlock_it() became one function.
*
* To all purists: Yes, I use a few goto's. Just pass on to the next function.
*/
//这里是实际的加锁函数,比较复杂的
static int lock_it(struct file *filp, struct file_lock *caller, unsigned int fd)
{
struct file_lock *fl;
struct file_lock *left = 0;
struct file_lock *right = 0;
struct file_lock **before;
int added = 0;
/*
* Find the first old lock with the same owner as the new lock.
*/
//一样的,找到指定进程的指定文件的锁结构链表
before = &filp->f_inode->i_flock;
while ((fl = *before) &&
(caller->fl_owner != fl->fl_owner ||
caller->fl_fd != fl->fl_fd))
before = &fl->fl_next;
/*
* Look up all locks of this owner.
*/
while ( (fl = *before)
&& caller->fl_owner == fl->fl_owner
&& caller->fl_fd == fl->fl_fd) {
/*
* Detect adjacent or overlapping regions (if same lock type)
*/
//进行相同的锁类型的操作,主要的就是进行重叠区域的操作,并更具
//需要创建新的锁结构
//这里感觉比较困难的就是一个锁可能横跨原来的多个锁等~~
if (caller->fl_type == fl->fl_type)
{
//注意的是caller是确定的,而fl是在循环中不断扫描更新的
if (fl->fl_end fl_start - 1)
goto next_lock;
/*
* If the next lock in the list has entirely bigger
* addresses than the new one, insert the lock here.
*/
//这里已经扫的超过来caller的结尾了
if (fl->fl_start > caller->fl_end + 1)
break;
/*
* If we come here, the new and old lock are of the
* same type and adjacent or overlapping. Make one
* lock yielding from the lower start address of both
* locks to the higher end address.
*/
//至少这里是肯定有重叠的了
if (fl->fl_start > caller->fl_start)
fl->fl_start = caller->fl_start;
else
caller->fl_start = fl->fl_start;
if (fl->fl_end fl_end)
fl->fl_end = caller->fl_end;
else
caller->fl_end = fl->fl_end;
//这里before(fl)的空间都被更新了,原先的before锁结构可以被释放了
//使用更大的caller来代替了,注意的是这里是同一个锁类型,使用最大的
//空间就可以了
if (added) { //区域合并过了
free_lock(before);
continue;
}
caller = fl;
added = 1;
goto next_lock;
}
/*
* Processing for different lock types is a bit more complex.
*/
//运行到这里肯定是不同类型的锁结构了
if (fl->fl_end fl_start)
goto next_lock;
if (fl->fl_start > caller->fl_end)
break;
//执行到这里就表示两个不同类型的锁有重叠的地方来,麻烦了~
//至少欣慰的是在调用这个函数之前就进行了检测,锁是不冲突的,可以分割
if (caller->fl_type == F_UNLCK)
added = 1;
if (fl->fl_start fl_start)
left = fl;
/*
* If the next lock in the list has a higher end address than
* the new one, insert the new one here.
*/
//这里caller已经完全被处理了,可以跳出循环了
if (fl->fl_end > caller->fl_end) {
right = fl;
break;
}
if (fl->fl_start >= caller->fl_start) {
/*
* The new lock completely replaces an old one (This may
* happen several times).
*/
if (added) {
free_lock(before);
continue;
}
/*
* Replace the old lock with the new one. Wake up
* anybody waiting for the old one, as the change in
* lock type migth satisfy his needs.
*/
wake_up(&fl->fl_wait);
fl->fl_start = caller->fl_start;
fl->fl_end = caller->fl_end;
fl->fl_type = caller->fl_type;
caller = fl;
added = 1;
}
/*
* Go on to next lock.
*/
next_lock:
before = &(*before)->fl_next;
}
//看来added是标记需不需要分配新的锁哈
// 分配新锁对各种类型的锁都是可能需要的(F_UNLCK除外)
if (! added) {
if (caller->fl_type == F_UNLCK) //can't be like this
return -EINVAL;
if (! (caller = alloc_lock(before, caller, fd)))
return -ENOLCK;
}
//到这里,caller部分已经被解决来,剩下的零碎的东西需要处理了
if (right) {
if (left == right) { // ??
/*
* The new lock breaks the old one in two pieces, so we
* have to allocate one more lock (in this case, even
* F_UNLCK may fail!).
*/
if (! (left = alloc_lock(before, right, fd))) {
if (! added)
free_lock(before);
return -ENOLCK;
}
}
right->fl_start = caller->fl_end + 1;
}
if (left)
left->fl_end = caller->fl_start - 1;
return 0;
}
/*
* File_lock() inserts a lock at the position pos of the linked list.
*/
//取用一个新的所,并将这个所插入到指定的 pos 位置
//注意下面两个函数的关于指针的指针的使用!
//pos参数的确有位置信息,很巧妙
static struct file_lock *alloc_lock(struct file_lock **pos,
struct file_lock *fl,
unsigned int fd)
{
struct file_lock *tmp;
tmp = file_lock_free_list;
if (tmp == NULL)
return NULL; /* no available entry */
if (tmp->fl_owner != NULL)
panic("alloc_lock: broken free list\n");
/* remove from free list */
file_lock_free_list = tmp->fl_next;
*tmp = *fl;
tmp->fl_next = *pos; /* insert into file's list */
*pos = tmp;
tmp->fl_owner = current; /* FIXME: needed? */
tmp->fl_fd = fd; /* FIXME: needed? */
tmp->fl_wait = NULL;
return tmp;
}
/*
* Add a lock to the free list ...
*/
static void free_lock(struct file_lock **fl_p)
{
struct file_lock *fl;
fl = *fl_p;
if (fl->fl_owner == NULL) /* sanity check */
panic("free_lock: broken lock list\n");
*fl_p = (*fl_p)->fl_next;
//被释放了,已经是空闲的文件锁结构了
fl->fl_next = file_lock_free_list; /* add to free list */
file_lock_free_list = fl;
fl->fl_owner = NULL; /* for sanity checks */
wake_up(&fl->fl_wait);
}
文档地址:http://blogimg.chinaunix.net/blog/upfile2/090519193321.pdf
本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u3/90306/showart_1933066.html |
|