免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 651 | 回复: 0
打印 上一主题 下一主题

AT&T汇编语言与GCC内嵌汇编简介_1 [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2008-05-07 13:29 |只看该作者 |倒序浏览
1 AT&T 与INTEL的汇编语言语法的区别
1.1大小写
1.2操作数赋值方向
1.3前缀
1.4间接寻址语法
1.5后缀
1.6指令
2 GCC内嵌汇编
2.1简介
2.2内嵌汇编举例
2.3语法
2.3.1汇编语句模板
2.3.2输出部分
2.3.3输入部分
2.3.4限制字符
2.3.5破坏描述部分
2.4GCC如何编译内嵌汇编代码
3后记
本节先介绍
AT&T汇编语言语法与INTEL汇编语法的差别,然后介绍GCC内嵌汇编语法。阅读本节需要读者具有INTEL
汇编语言基础。
1 AT&T 与INTEL的汇编语言语法的区别
1.1   
指令大小写
INTEL格式的指令使用大写字母,而AT&T
格式的使用小写字母。
例:
INTEL AT&T
MOV EAX,EBX movl %ebx,%eax
1.2   
指令操作数赋值方向
在INTEL语法中,第一个表示目的操作数,第二个表示源操作数,赋值方向从右向左。
   AT&T语法第一个为源操作数,第二个为目的操作数,方向从左到右,合乎自然。
例:
INTEL AT&T
MOV EAX,EBX movl %ebx,%eax
1.3   
指令前缀
在INTEL语法中寄存器和立即数不需要前缀;
   AT&T中寄存器需要加前缀“%”;立即数需要加前缀“$”。
例:
INTEL AT&T
MOV EAX,1 movl $1,%eax
符号常数直接引用,不需要加前缀,如:
movl value , %ebx
value为一常数;
在符号前加前缀 $, 表示引用符号地址,

movl $value, %ebx
是将value的地址放到ebx中。
总线锁定前缀“lock”:
总线锁定操作。“lock”前缀在Linux
核心代码中使用很多,特别是SMP
代码中。当总线锁定后其它CPU
不能存取锁定地址处的内存单元。
远程跳转指令和子过程调用指令的操作码使用前缀“l“,分别为ljmp,lcall,
与之相应的返回指令伪lret。
例:
INTEL AT&T
lcall $secion:$offset
JMP FAR SECTION:OFFSET ljmp $secion:$offset
RET FAR SATCK_ADJUST lret $stack_adjust
1.4   间接寻址语法
INTEL中基地址使用“[”、“]”,而在AT&T“(”、“)”;
另外处理复杂操作数的语法也不同,
INTEL为Segreg:[base+index*scale+disp]
,而在AT&T中为%segreg:disp(base,index,sale),其中segreg
,index,scale,disp都是可选的,在指定index而没有显式指定Scale
的情况下使用默认值1。Scale,disp不需要加前缀“&”。
INTEL AT&T
Instr foo,segreg:[base+index*scale+disp] instr %segreg:disp(base,index,scale),foo
1.5   
指令后缀
       AT&T
语法中大部分指令操作码的最后一个字母表示操作数大小,“b”表示byte
(一个字节);“w”表示word(2,个字节);“l”表示long(4,个字节)。
INTEL中处理内存操作数时也有类似的语法如:
BYTE PTR、WORD PTR、DWORD PTR。
例:
INTEL AT&T
mov al, bl movb %bl,%al
mov ax,bx movw %bx,%ax
mov eax, dword ptr [ebx] movl (%ebx), %eax
AT&T汇编指令中,操作数扩展指令有两个后缀,一个指定源操作数的字长,另一个指定目标操作数的字长。AT&T的符号扩展指令的为“movs”,零扩展指令为“movz
”(相应的Intel指令为“movsx”和“movzx”)。因此,“movsbl %al,%edx”表示对寄存器al
中的字节数据进行字节到长字的符号扩展,计算结果存放在寄存器edx
中。下面是一些允许的操作数扩展后缀:
l        
bl: ,字节>->长字 l        
bw: ,字节>->字 l        
wl: ,字->长字
跳转指令标号后的后缀表示跳转方向,“f”表示向前(forward),
“b,”表示向后(back)。
例:
jmp 1f
jmp 1f
1.6   指令
INTEL汇编与AT&T汇编指令基本相同,差别仅在语法上。关于每条指令的语法可以参考I386Manual。
2      GCC内嵌汇编
2.1   简介
内核代码绝大部分使用C
语言编写,只有一小部分使用汇编语言编写,例如与特定体系结构相关的代码和对性能影响很大的代码。GCC提供了内嵌汇编的功能,可以在C代码中直接内嵌汇编语言语句,大大方便了程序设计。
简单的内嵌汇编很容易理解
例:
__asm__
__volatile__("hlt");
“__asm__”表示后面的代码为内嵌汇编,“asm”是“__asm__”的别名。
“__volatile__”表示编译器不要优化代码,后面的指令保留原样,
“volatile”是它的别名。括号里面是汇编指令。
2.2   内嵌汇编举例在内嵌汇编中,可以将C
语言表达式指定为汇编指令的操作数,而且不用去管如何将C
语言表达式的值读入哪个寄存器,以及如何将计算结果写回C
变量,你只要告诉程序中C语言表达式与汇编指令操作数之间的对应关系即可, GCC
会自动插入代码完成必要的操作。
使用内嵌汇编,要先编写汇编指令模板,然后将C语言表达式与指令的操作数相关联,并告诉
GCC对这些操作有哪些限制条件。例如在下面的汇编语句:
__asm__ __violate__
("movl %1,%0" : "=r" (result) : "m" (input));
“movl %1,%0”是指令模板;“%0”和“%1”代表指令的操作数,称为占位符,内嵌汇编靠它们将C
语言表达式与指令操作数相对应。指令模板后面用小括号括起来的是C
语言表达式,本例中只有两个:“result”和“input”,他们按照出现的顺序分别与指令操作
数“%0”,“%1,”对应;注意对应顺序:第一个C表达式对应“%0”;第二个表达式对应“%1
”,依次类推,操作数至多有10个,分别用“%0”,“%1”….“%9,”表示。在每个操作数前
面有一个用引号括起来的字符串,字符串的内容是对该操作数的限制或者说要求。“result”前面
的限制字符串是“=r”,其中“=”表示“result”是输出操作数,“r
”表示需要将“result”与某个通用寄存器相关联,先将操作数的值读入寄存器,然后
在指令中使用相应寄存器,而不是“result”本身,当然指令执行完后需要将寄存器中的值
存入变量“result”,从表面上看好像是指令直接对“result”进行操作,实际上GCC
做了隐式处理,这样我们可以少写一些指令。“input”前面的“r”表示该表达式需要先放入
某个寄存器,然后在指令中使用该寄存器参加运算。
我们将上面的内嵌代码放到一个C源文件中,然后使用gcc –c–S得到该C
文件源代码相对应的汇编代码,然后查看一下汇编代码,看看GCC是如何处理的。
C源文件如下内容如下,注意该代码没有实际意义,仅仅作为例子。
extern     int
input,result;
   
void test(void)
{
         input
= 1;
__asm__ __volatile__ ("movl %1,%0" :
"=r" (result) : "r" (input));
         return
;
}
对应的汇编代码如下;
行号 代码 解释
1
7
8 movl    $1, input 对应C语言语句input = 1;
9 input, %eax
10 #APP GCC插入的注释,表示内嵌汇编开始
11 movl %eax,%eax 我们的内嵌汇编语句
12 #NO_APP GCC 插入的注释,表示内嵌汇编结束
13 movl %eax, result 将结果存入result变量
14

18
。。。。。。
从汇编代码可以看出,第9行和第13行是GCC,自动增加的代码,GCC
根据限定字符串决定如何处理C表达式,本例两个表达式都被指定为“r”型,所以先使用指令:
movl    input, %eax
将input读入寄存器%eax;GCC,也指定一个寄存器与输出变量result
相关,本例也是%eax,等得到操作结果后再使用指令:
movl %eax, result
将寄存器的值写回C变量result中。从上面的汇编代码我们可以看出与result
和input,相关连的寄存器都是%eax,GCC使用%eax,替换内嵌汇编指令模板中的
%0,%1
movl %eax,%eax
显然这一句可以不要。但是没有优化,所以这一句没有被去掉。
由此可见,C表达式或者变量与寄存器的关系由GCC自动处理,我们只需使用限制字符串指导GCC
如何处理即可。限制字符必须与指令对操作数的要求相匹配,否则产生的汇编代码
将会有错,读者可以将上例中的两个“r”,都改为“m”(m,表示操作数放在内存,而不是寄
存器中),编译后得到的结果是:
movl input, result
很明显这是一条非法指令,因此限制字符串必须与指令对操作数的要求匹配。例如指令movl
允许寄存器到寄存器,立即数到寄存器等,但是不允许内存到内存的操作,因此两个操作数
不能同时使用“m”作为限定字符。
2.3   语法
内嵌汇编语法如下:
__asm__(
汇编语句模板:
输出部分:
输入部分:
破坏描述部分)
共四个部分:汇编语句模板,输出部分,输入部分,破坏描述部分,各部分使用“:”格
开,汇编语句模板必不可少,其他三部分可选,如果使用了后面的部分,而前面部分为空,
也需要用“:”格开,相应部分内容为空。例如:
__asm__ __volatile__(
"cli":
:
:"memory")
2.3.1   汇编语句模板
汇编语句模板由汇编语句序列组成,语句之间使用“;”、“\n”或“\n\t”分开。
指令中的操作数可以使用占位符引用C语言变量,操作数占位符最多10个,名称如下:%0,%1…,%9。
指令中使用占位符表示的操作数,总被视为long型(4,个字节),但对其施加的操作
根据指令可以是字或者字节,当把操作数当作字或者字节使用时,默认为低字或者低字节。
对字节操作可以显式的指明是低字节还是次字节。方法是在%和序号之间插入一个字母,
“b”代表低字节,“h”代表高字节,例如:%h1。
2.3.2 输出部分
输出部分描述输出操作数,不同的操作数描述符之间用逗号格开,每个操作数描述符由限定字符串和
C语言变量组成。每个输出操作数的限定字符串必须包含“=”表示他是一个输出操作数。
例:
__asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x) )
描述符字符串表示对该变量的限制条件,这样GCC就可以根据这些条件决定如何
分配寄存器,如何产生必要的代码处理指令操作数与C表达式或C变量之间的联系。
2.3.3   输入部分
输入部分描述输入操作数,不同的操作数描述符之间使用逗号格开,每个操作数描述符由
限定字符串和C语言表达式或者C语言变量组成。
例1:
__asm__ __volatile__ ("lidt %0" : : "m" (real_mode_idt));
例二(bitops.h):
Static __inline__ void __set_bit(int nr,
volatile void * addr)
{
         __asm__(
"btsl%1,%0"   :
"=m"(ADDR)    :
"Ir"(nr));
}
后例功能是将(*addr)的第nr位设为1。第一个占位符%0与C,语言变量ADDR
对应,第二个占位符%1与C,语言变量nr对应。因此上面的汇编语句代码与下面的伪代码等价:
btsl nr, ADDR,该指令的两个操作数不能全是内存变量,因此将nr的限定字符串指定为“Ir”,
将nr,与立即数或者寄存器相关联,这样两个操作数中只有ADDR为内存变量。
2.3.4   限制字符
2.3.4.1            限制字符列表
限制字符有很多种,有些是与特定体系结构相关,此处仅列出常用的限定字符和i386
中可能用到的一些常用的限定符。它们的作用是指示编译器如何处理其后的C
语言变量与指令操作数之间的关系,例如是将变量放在寄存器中还是放在内存中等,
下表列出了常用的限定字母。
分类
限定符 描述 通用寄存器
“a”将输入变量放入eax
这里有一个问题:假设eax已经被使用,那怎么办?
其实很简单:因为GCC知道eax已经被使用,它在这段汇编代码的起始处插入一条
语句pushl %eax,将eax内容保存到堆栈,然后在这段代码结束处再增加一条
语句popl %eax,恢复eax的内容
“b”将输入变量放入ebx
“c”将输入变量放入ecx
“d”将输入变量放入edx
“s”将输入变量放入esi
“d”将输入变量放入edi
“q”将输入变量放入eax,ebx ,ecx ,edx中的一个
“r”将输入变量放入通用寄存器,也就是eax ,ebx,ecx,edx,esi,edi中的一个
“A”把eax和edx,合成一个64位的寄存器(uselong longs)
“m”内存变量
“o”操作数为内存变量,但是其寻址方式是偏移量类型,也即是基址寻址,或者是基址加变址寻址
“V”操作数为内存变量,但寻址方式不是偏移量类型
“,” 操作数为内存变量,但寻址方式为自动增量
“p”操作数是一个合法的内存地址(指针)
寄存器或内存
“g” 将输入变量放入eax,ebx,ecx ,edx中的一个或者作为内存变量
“X”操作数可以是任何类型
立即数
“I” 0-31 之间的立即数(用于32位移位指令)
“J” 0-63 之间的立即数(用于64 位移位指令)
“N” 0-255 ,之间的立即数(用于out 指令)
“i” 立即数
“n” 立即数,有些系统不支持除字以外的立即数,这些系统应该使用“n”而不是“i”
匹配
“0”,“1 ,”... “9 ”
表示用它限制的操作数与某个指定的操作数匹配,也即该操作数就是指定的那个操作数,
例如用“0 ”去描述“%1”操作数,那么“%1”引用的其实就是“%0”操作数,注意作为
限定符字母的0-9 ,与指令中的“%0”-“%9”的区别,前者描述操作数,后者代表操作数。
   
后面有详细描述 & 该输出操作数不能使用过和输入操作数相同的寄存器
   
后面有详细描述
操作数类型
“=” 操作数在指令中是只写的(输出操作数)
“+” 操作数在指令中是读写类型的(输入输出操作数)
   浮点数
“f”
浮点寄存器
“t”第一个浮点寄存器
“u”第二个浮点寄存器
“G”标准的80387
浮点常数
   % 该操作数可以和下一个操作数交换位置
例如addl的两个操作数可以交换顺序(当然两个操作数都不能是立即数)
# 部分注释,从该字符到其后的逗号之间所有字母被忽略
* 表示如果选用寄存器,则其后的字母被忽略
现在继续看上面的例子,
"=m" (ADDR)表示ADDR为内存变量(“m”),而且是输出变量(“=”);"Ir" (nr)表示nr,为
0-31之间的立即数(“I”)或者一个寄存器操作数(“r”)。
2.3.4.2            
匹配限制符
I386
指令集中许多指令的操作数是读写型的(读写型操作数指先读取原来的值然后参加运算,最后
将结果写回操作数),例如addl %1,%0,它的作用是将操作数%0与操作数%1的和存入操作数%0,
因此操作数%0是读写型操作数。老版本的GCC对这种类型操作数的支持不是很好,它将操作数严格
分为输入和输出两种,分别放在输入部分和输出部分,而没有一个单独部分描述读写型操作数,
因此在GCC中读写型的操作数需要在输入和输出部分分别描述,靠匹配限制符将两者关联到一起
注意仅在输入和输出部分使用相同的C变量,但是不用匹配限制符,产生的代码很可能不对,后
面会分析原因。
匹配限制符是一位数字:“0”、“1”……“9,”,分别表示它限制的C表达式分别与
占位符%0,%1,……%9对应的C变量匹配。例如使用“0”作为%1,的限制字符,那么
%0和%1表示同一个C,变量。
看一下下面的代码就知道为什么要将读写型操作数,分别在输入和输出部分加以描述。
该例功能是求input+result的和,然后存入result:
extern int input,result;
   
void test_at_t()
{
         result= 0;
         input = 1;
         __asm__
__volatile__ ("addl %1,%0":"=r"(result): "r"(input));
         
}
对应的汇编代码为:
         movl $0,_result
         movl $1,_input
         movl _input,%edx /APP
         addl %edx,%eax /NO_APP
         movl %eax,%edx
         movl %edx,_result
input 为输入型变量,而且需要放在寄存器中,GCC给它分配的寄存器是%edx,在执行addl之前%edx,
的内容已经是input的值。可见对于使用“r”限制的输入型变量或者表达式,在使用之前GCC会插入
必要的代码将他们的值读到寄存器;“m”型变量则不需要这一步。读入input后执行addl,显然%eax
的值不对,需要先读入result的值才行。再往后看:movl %eax,%edx和movl %edx,_result
的作用是将结果存回result,分配给result的寄存器与分配给input的一样,都是%edx。
综上可以总结出如下几点:
1.       使用“r”限制的输入变量,GCC先分配一个寄存器,然后将值读入寄存器,最后
用该寄存器替换占位符;
2.        使用“r”限制的输出变量,GCC会分配一个寄存器,然后用该寄存器替换占位符,
但是在使用该寄存器之前并不将变量值先读入寄存器,GCC认为所有输出变量以前的
值都没有用处,不读入寄存器(可能是因为AT&T汇编源于CISC架构处理器的汇编语言
,在CISC处理器中大部分指令的输入输出明显分开,而不像RISC那样一个操作数既
做输入又做输出,例如add r0,r1,r2,r0,和r1是输入,r2是输出,输入和输出分开,
没有使用输入输出型操作数,这样我们就可以认为r2对应的操作数原来的值没有用处,
也就没有必要先将操作数的值读入r2,因为这是浪费处理器的CPU周期),最后GCC插入代码,
将寄存器的值写回变量;
3. 输入变量使用的寄存器在最后一处使用它的指令之后,就可以挪做其他用处,因为
已经不再使用。例如上例中的%edx。在执行完addl之后就作为与result对应的寄存器。
因为第二条,上面的内嵌汇编指令不能奏效,因此需要在执行addl之前把result的值读入
寄存器,也许再将result放入输入部分就可以了(因为第一条会保证将result
先读入寄存器)。修改后的指令如下(为了更容易说明问题将input限制符由“r,”改为“m”):
extern int input,result;
   
void test_at_t()
{
   
         result = 0;
         input = 1;
         __asm__
__volatile__ ("addl %2,%0":"=r"(result):"r"(result),"m"(input));
         
}
看上去上面的代码可以正常工作,因为我们知道%0和%1都和result相关,应该使用同一个
寄存器,但是GCC并不去判断%0和%1,是否和同一个C表达式或变量相关联(这样易于产生与
内嵌汇编相应的汇编代码),因此%0和%1使用的寄存器可能不同。我们看一下汇编代码就知道了。
movl $0,_result
         movl $1,_input
         movl _result,%edx /APP
         addl _input,%eax /NO_APP
         movl %eax,%edx
         movl %edx,_result
现在在执行addl之前将result的值被读入了寄存器%edx,但是addl指令的操作数%0
却成了%eax,而不是%edx,与预料的不同,这是因为GCC给输出和输入部分的变量分配了不同
的寄存器,GCC没有去判断两者是否都与result相关,后面会讲GCC如何翻译内嵌汇编,看完之后
就不会惊奇啦。
使用匹配限制符后,GCC知道应将对应的操作数放在同一个位置(同一个寄存器或者同一个
内存变量)。使用匹配限制字符的代码如下:
extern int input,result;
   
void test_at_t()
{
         result = 0;
         input = 1;
         __asm__
__volatile__ ("addl %2,%0":"=r"(result):"0"(result),"m"(input));
         
}
输入部分中的result用匹配限制符“0”限制,表示%1与%0,代表同一个变量,
输入部分说明该变量的输入功能,输出部分说明该变量的输出功能,两者结合表示result
是读写型。因为%0和%1,表示同一个C变量,所以放在相同的位置,无论是寄存器还是内存。
相应的汇编代码为:
         movl $0,_result
         movl $1,_input
         movl _result,%edx
         movl %edx,%eax /APP
         addl _input,%eax /NO_APP
         movl %eax,%edx
         movl %edx,_result
可以看到与result相关的寄存器是%edx,在执行指令addl之前先从%edx将result读入%eax,
执行之后需要将结果从%eax读入%edx,最后存入result中。这里我们可以看出GCC
处理内嵌汇编中输出操作数的一点点信息:addl并没有使用%edx,可见它不是简单的用result
对应的寄存器%edx去替换%0,而是先分配一个寄存器,执行运算,最后才将运算结果存入
对应的变量,因此GCC是先看该占位符对应的变量的限制符,发现是一个输出型寄存器变量,
就为它分配一个寄存器,此时没有去管对应的C变量,最后GCC,知道还要将寄存器的值写回变量,
与此同时,它发现该变量与%edx关联,因此先存入%edx,再存入变量。
至此读者应该明白了匹配限制符的意义和用法。在新版本的GCC中增加了一个限制字符“+”,
它表示操作数是读写型的,GCC知道应将变量值先读入寄存器,然后计算,最后写回变量,而
无需在输入部分再去描述该变量。
例;
extern int input,result;
   
void test_at_t()
{
   
         result = 0;
         input = 1;
         __asm__
__volatile__ ("addl %1,%0":"+r"(result):"m"(input));
         
}
此处用“+”替换了“=”,而且去掉了输入部分关于result的描述,产生的汇编代码如下:
         movl $0,_result
         movl $1,_input
         movl _result,%eax /APP
         addl _input,%eax /NO_APP
         movl %eax,_result
L2:
         movl %ebp,%esp
处理的比使用匹配限制符的情况还要好,省去了好几条汇编代码。


本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u2/68413/showart_679927.html
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP