免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 3731 | 回复: 0
打印 上一主题 下一主题

UFS - Unix File System [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2008-12-05 16:11 |只看该作者 |倒序浏览

The Unix file system (UFS) is a file system used by many Unix and Unix-like operating systems. It is also called the Berkeley Fast File System, the BSD Fast File System or FFS. It is a distant descendant of the original filesystem used by Version 7 Unix.
Contents
[hide]
1 Design
2 History and evolution
3 Implementations
4 See also
5 Notes
6 References
7 External links

[edit] Design
A UFS volume is composed of the following parts:
a few blocks at the beginning of the partition reserved for boot blocks (which must be initialized separately from the filesystem)
a superblock, containing a magic number identifying this as a UFS filesystem, and some other vital numbers describing this filesystem's geometry and statistics and behavioral tuning parameters
a collection of cylinder groups. Each cylinder group has the following components:
a backup copy of the superblock
a cylinder group header, with statistics, free lists, etc, about this cylinder group, similar to those in the superblock
a number of inodes, each containing file attributes
a number of data blocks
Inodes are numbered sequentially. The first several inodes are reserved for historical reasons, followed by the inode for the root directory.
Directory files contain only the list of filenames in the directory and the inode associated with each file. All file metadata is kept in the inode.
[edit] History and evolution
Early versions of Unix used filesystems referred to simply as FS. FS only included the boot block, superblock, a clump of inodes, and the data blocks. This worked well for the small disks early Unixes were designed for, but as technology advanced and disks got larger, moving the head back and forth between the clump of inodes and the data blocks they referred to caused thrashing. BSD optimized this in FFS (Fast File System) by inventing cylinder groups, breaking the disk up into smaller chunks, each with its own inode clump and data blocks.
The intent of BSD FFS is to try to localize associated data blocks and metadata in the same cylinder group, and ideally, all of the contents of a directory (both data and metadata for all the files) in the same or nearby cylinder group, thus reducing fragmentation caused by scattering a directory's contents over a whole disk.
Some of the performance parameters in the superblock included number of tracks and sectors, disk rotation speed, head speed, and alignment of the sectors between tracks. In a fully optimized system, the head could be moved between close tracks to read scattered sectors from alternating tracks while waiting for the platter to spin around.
As disks grew larger and larger, sector level optimization became obsolete (especially with disks that used linear sector numbering and variable sectors per track). With larger disks and larger files, fragmented reads became more of a problem. To combat this, BSD originally increased the filesystem block size from one sector to 1k in 4.0BSD, and, in FFS, increased the filesystem block size from 1k to 8k. This has several effects. The chances of a file's sectors being contiguous is much greater. The amount of overhead to list the file's blocks is reduced. The number of blocks representable in a fixed bit width block number is increased (allowing for larger disks).
With larger block sizes, disks with many small files would waste a lot of space, so BSD added block level fragmentation[1] (also called block suballocation, tail merging or tail packing), where the last partial block of data from several files may be stored in a single "fragment" block instead of multiple mostly empty blocks (Allen 2005).
[edit] Implementations
Vendors of some commercial Unix systems, such as SunOS/Solaris, System V Release 4, HP-UX, and Tru64 UNIX, have adopted UFS. Most of them adapted UFS to their own uses, adding proprietary extensions that may not be recognized by other vendors' versions of Unix. Surprisingly, many have continued to use the original block size and data field widths as the original UFS, so some degree of (read) compatibility remains across platforms. Compatibility between implementations as a whole is spotty at best and should be researched before using it across multiple platforms where shared data is a primary intent.
As of Solaris 7, Sun Microsystems included UFS Logging, which brought filesystem journaling to UFS. Solaris UFS also has extensions for large files and large disks and other features.
In 4.4BSD and BSD Unix systems derived from it, such as FreeBSD, NetBSD, OpenBSD, and DragonFlyBSD, the implementation of UFS1 and UFS2 is split into two layers — an upper layer that provides the directory structure and supports metadata (permissions, ownership, etc.) in the inode structure, and lower layers that provide data containers implemented as inodes. This was done to support both the traditional FFS and the LFS log-structured file system with common code for common functions. The upper layer is called "UFS", and the lower layers are called "FFS" and "LFS". In some of those systems, the term "FFS" is used for the combination of the FFS lower layer and the UFS upper layer, and the term "LFS" is used for the combination of the LFS lower layer and the UFS upper layer.
Kirk McKusick extended the FreeBSD FFS and UFS layers to support a new variant, called UFS2, which adds 64-bit block pointers (allowing volumes to grow up to 8 zettabytes), variable-sized blocks (similar to extents), extended flag fields, additional 'birthtime' stamps, extended attribute support and POSIX1.e ACLs. UFS2 became the default UFS version starting with FreeBSD 5.0. FreeBSD also introduced soft updates and the ability to make file system snapshots for both UFS1 and UFS2. These have since been ported to NetBSD. OpenBSD has supported soft updates since version 2.9 [1] and UFS2 since version 4.2 [2]. Since FreeBSD 7.0, UFS also fully supports filesystem journaling using gjournal mechanism.
Linux includes a UFS implementation for binary compatibility at the read level with other Unixes, but since there is no standard implementation for the vendor extensions to UFS, Linux does not have full support for writing to UFS. The native Linux ext2 filesystem is inspired by UFS. (In fact, in some 4.4BSD-derived systems, the UFS layer can use an ext2 layer as a container layer, just as it can use FFS and LFS.)
NeXTStep, which was BSD-derived, also used a version of UFS. In Apple's Mac OS X, it is available as an alternative to HFS+, their proprietary filesystem. However, as of Mac OS X v10.5, one cannot install Mac OS X "Leopard" on a UFS-formatted volume. In addition, one cannot upgrade older versions of Mac OS X installed on UFS-formatted volumes to Leopard; upgrading requires reformatting the startup volume. [3]
http://en.wikipedia.org/wiki/Unix_File_System


本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u/19919/showart_1681318.html
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP