9、
【问题描述】用递归函数求解两个正整数的最大公约数的过程。
【思路】此题不需太多的思考就是运用欧几里得算法(Euclid’s algorithm)。
摘自《The Art of Computer Programming》volume 1:
(Euclid’s algorithm )Give two postive integers m and n, find their greatest common divisor, that is ,the largest positive integer that evenly divide both m and n.
Step1.[Find remainder.]Divide m by n and let r be the remainder.(We will have 0<=r<n.)
Step2.[Is it zero?]If r=0,the algorithm terminates; n is the answer.
Step3.[Reduce.]Set m=n,n=r, and go back to Step1.
|
【代码】
cCODE:
| #include<stdio.h>
#include<stdlib.h>
int GCD(int m,int n);
/*function is to find the greatest common divisor between mand n*/
int main (int argc, char **argv)
{
int m,n,temp;
printf("Please input m and n:\n");
scanf("%d %d",&m,&n);
if(m<n)
{/*This is just ensure m>n*/
temp=m;
m=n;
n=temp;
}
printf("The greatest common divisor of (%d,%d) is %d!\n",m,n,GCD(m,n));
system("PAUSE");
return 0;
}
int GCD(int m,int n)
{
if(m%n==0)
return n;
else return GCD(n,m%n);
}
| 【程序输入输出】
Please input m and n:
10 5
The greatest common divisor of (10,5) is 5!
10、
【问题描述】 已知Ackerman函数对于整数m>=0和n>=0有如下定义:
ack(0,n)=n+1
ack(m,0)=ack(m-1,1)
ack(m,n)=ack(m-1,ack(m,n-1))
【思路】此题明显用递归方法解,由上述定义可得递归公式如下:
| n+1, 当m=0时;
ack(m,n)= | ack(m-1,1), 当n=0时; | ack(m-1,ack(m,n-1)),其他情况。
【代码】
cCODE:
| #include<stdio.h>
#include<stdlib.h>
int ack(int m,int n);
int main (int argc, char **argv)
{
int m,n;
printf("Please input m and n:\n");
scanf("%d %d",&m,&n);
printf("The result of ack(%d,%d) is %d!\n",m,n,ack(m,n));
system("PAUSE");
return 0;
}
int ack(int m,int n)
{
if(0==m)
return n+1;
else if(0==n)
return ack(m-1,1);
else return ack(m-1,ack(m,n-1));
}
|
【程序输入输出】
example 1:
input:
Please input m and n:
0 5
ouput:
The result of ack(0,5) is 6!
example 2:
Please input m and n:
4 0
The result of ack(4,0) is 13!
example 3:
Please input m and n:
2 3
The result of ack(2,3) is 9!
[ 本帖最后由 吴秦 于 2009-7-1 17:58 编辑 ] |