免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 1075 | 回复: 0
打印 上一主题 下一主题

[转载]Linux环境进程间通信 [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2009-12-30 14:22 |只看该作者 |倒序浏览
Linux环境进程间通信(一)管道及有名管道




文档选项


未显示需要 JavaScript
的文档选项



打印本页



将此页作为电子邮件发送
级别: 初级
郑彦兴
(
[email=mlinux@163.com?subject=Linux%E7%8E%AF%E5%A2%83%E8%BF%9B%E7%A8%8B%E9%97%B4%E9%80%9A%E4%BF%A1%EF%BC%88%E4%B8%80%EF%BC%89]mlinux@163.com[/email]
)国防科大计算机学院
2002 年  12 月  11 日

本系列序中作者概述了 linux
进程间通信的几种主要手段。其中管道和有名管道是最早的进程间通信机制之一,管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因
此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
认清管道和有名管道的读写规则是在程序中应用它们的关键,本文在详细讨论了管道和有名管道的通信机制的基础上,用实例对其读写规则进行了程序验证,这样做
有利于增强读者对读写规则的感性认识,同时也提供了应用范例。
      
1、        管道概述及相关API应用
      
1.1 管道相关的关键概念
      
管道是Linux支持的最初Unix IPC形式之一,具有以下特点:
      
  • 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;
  • 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程);
  • 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。
  • 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。

      
1.2管道的创建:
      

      #include
int pipe(int fd[2])

      
该函数创建的管道的两端处于一个进程中间,在实际应
用中没有太大意义,因此,一个进程在由pipe()创建管道后,一般再fork一个子进程,然后通过管道实现父子进程间的通信(因此也不难推出,只要两个
进程中存在亲缘关系,这里的亲缘关系指的是具有共同的祖先,都可以采用管道方式来进行通信)。
      
1.3管道的读写规则:
      

道两端可分别用描述字fd[0]以及fd[1]来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字fd[0]表示,称其为管道
读端;另一端则只能用于写,由描述字fd[1]来表示,称其为管道写端。如果试图从管道写端读取数据,或者向管道读端写入数据都将导致错误发生。一般文件
的I/O函数都可以用于管道,如close、read、write等等。
      
从管道中读取数据:
      
  • 如果管道的写端不存在,则认为已经读到了数据的末尾,读函数返回的读出字节数为0;

  • 管道的写端存在时,如果请求的字节数目大于PIPE_BUF,则返回管道中现有的数据字节数,如果请求的字节数目不大于PIPE_BUF,则返回管道中现
    有数据字节数(此时,管道中数据量小于请求的数据量);或者返回请求的字节数(此时,管道中数据量不小于请求的数据量)。注:(PIPE_BUF在
    include/linux/limits.h中定义,不同的内核版本可能会有所不同。Posix.1要求PIPE_BUF至少为512字节,red
    hat 7.2中为4096)。

      
关于管道的读规则验证:
      

       /**************
* readtest.c *
**************/
#include
#include
#include
main()
{
        int pipe_fd[2];
        pid_t pid;
        char r_buf[100];
        char w_buf[4];
        char* p_wbuf;
        int r_num;
        int cmd;
       
        memset(r_buf,0,sizeof(r_buf));
        memset(w_buf,0,sizeof(r_buf));
        p_wbuf=w_buf;
        if(pipe(pipe_fd)0)
        {
        close(pipe_fd[0]);//read
        strcpy(w_buf,"111");
        if(write(pipe_fd[1],w_buf,4)!=-1)
                printf("parent write over\n");
        close(pipe_fd[1]);//write
                printf("parent close fd[1] over\n");
        sleep(10);
        }       
}
/**************************************************
* 程序输出结果:
* parent write over
* parent close fd[1] over
* read num is 4   the data read from the pipe is 111
* 附加结论:
* 管道写端关闭后,写入的数据将一直存在,直到读出为止.
****************************************************/


      
向管道中写入数据:
      
  • 向管道中写入数据时,linux将不保证写入的原子性,管道缓冲区一有空闲区域,写进程就会试图向管道写入数据。如果读进程不读走管道缓冲区中的数据,那么写操作将一直阻塞。
             
    注:只有在管道的读端存在时,向管道中写入数据才有意义。否则,向管道中写入数据的进程将收到内核传来的SIFPIPE信号,应用程序可以处理该信号,也可以忽略(默认动作则是应用程序终止)。
            

      
对管道的写规则的验证1:写端对读端存在的依赖性
      

      #include
#include
main()
{
        int pipe_fd[2];
        pid_t pid;
        char r_buf[4];
        char* w_buf;
        int writenum;
        int cmd;
       
        memset(r_buf,0,sizeof(r_buf));
        if(pipe(pipe_fd)0)
        {
        sleep(1);  //等待子进程完成关闭读端的操作
        close(pipe_fd[0]);//write
        w_buf="111";
        if((writenum=write(pipe_fd[1],w_buf,4))==-1)
                printf("write to pipe error\n");
        else       
                printf("the bytes write to pipe is %d \n", writenum);
       
        close(pipe_fd[1]);
        }       
}

      
则输出结果为: Broken
pipe,原因就是该管道以及它的所有fork()产物的读端都已经被关闭。如果在父进程中保留读端,即在写完pipe后,再关闭父进程的读端,也会正常
写入pipe,读者可自己验证一下该结论。因此,在向管道写入数据时,至少应该存在某一个进程,其中管道读端没有被关闭,否则就会出现上述错误(管道断
裂,进程收到了SIGPIPE信号,默认动作是进程终止)
      
对管道的写规则的验证2:linux不保证写管道的原子性验证
      

      #include
#include
#include
main(int argc,char**argv)
{
        int pipe_fd[2];
        pid_t pid;
        char r_buf[4096];
        char w_buf[4096*2];
        int writenum;
        int rnum;
        memset(r_buf,0,sizeof(r_buf));       
        if(pipe(pipe_fd)0)
        {
        close(pipe_fd[0]);//write
        memset(r_buf,0,sizeof(r_buf));       
        if((writenum=write(pipe_fd[1],w_buf,1024))==-1)
                printf("write to pipe error\n");
        else       
                printf("the bytes write to pipe is %d \n", writenum);
        writenum=write(pipe_fd[1],w_buf,4096);
        close(pipe_fd[1]);
        }       
}
输出结果:
the bytes write to pipe 1000
the bytes write to pipe 1000  //注意,此行输出说明了写入的非原子性
the bytes write to pipe 1000
the bytes write to pipe 1000
the bytes write to pipe 1000
the bytes write to pipe 120  //注意,此行输出说明了写入的非原子性
the bytes write to pipe 0
the bytes write to pipe 0
......

      
结论:
      
写入数目小于4096时写入是非原子的!
        
如果把父进程中的两次写入字节数都改为5000,则很容易得出下面结论:
        
写入管道的数据量大于4096字节时,缓冲区的空闲空间将被写入数据(补齐),直到写完所有数据为止,如果没有进程读数据,则一直阻塞。
      
      
1.4管道应用实例:
      
        实例一:用于shell
      
      

道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个shell程序(Bourne shell或C
shell等)键入who│wc -l后,相应shell程序将创建who以及wc两个进程和这两个进程间的管道。考虑下面的命令行:
      
$kill -l 运行结果见
        
附一

      
      
$kill -l | grep SIGRTMIN 运行结果如下:
      

      30) SIGPWR        31) SIGSYS        32) SIGRTMIN        33) SIGRTMIN+1
34) SIGRTMIN+2        35) SIGRTMIN+3        36) SIGRTMIN+4        37) SIGRTMIN+5
38) SIGRTMIN+6        39) SIGRTMIN+7        40) SIGRTMIN+8        41) SIGRTMIN+9
42) SIGRTMIN+10        43) SIGRTMIN+11        44) SIGRTMIN+12        45) SIGRTMIN+13
46) SIGRTMIN+14        47) SIGRTMIN+15        48) SIGRTMAX-15        49) SIGRTMAX-14

      
        实例二:用于具有亲缘关系的进程间通信
      
      
下面例子给出了管道的具体应用,父进程通过管道发送一些命令给子进程,子进程解析命令,并根据命令作相应处理。
      

      #include
#include
main()
{
        int pipe_fd[2];
        pid_t pid;
        char r_buf[4];
        char** w_buf[256];
        int childexit=0;
        int i;
        int cmd;
       
        memset(r_buf,0,sizeof(r_buf));
        if(pipe(pipe_fd)0)
        //parent: send commands to child
        {
        close(pipe_fd[0]);
        w_buf[0]="003";
        w_buf[1]="005";
        w_buf[2]="777";
        w_buf[3]="000";
        for(i=0;i256))
//suppose child only support 256 commands
        {
        printf("child: invalid command \n");
        return -1;
        }
printf("child: the cmd from parent is %d\n", cmd);
return 0;
}

      
1.5管道的局限性
      
管道的主要局限性正体现在它的特点上:
      
  • 只支持单向数据流;
  • 只能用于具有亲缘关系的进程之间;
  • 没有名字;
  • 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);
  • 管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等;

      




回页首
2、        有名管道概述及相关API应用
      
2.1 有名管道相关的关键概念
      

道应用的一个重大限制是它没有名字,因此,只能用于具有亲缘关系的进程间通信,在有名管道(named
pipe或FIFO)提出后,该限制得到了克服。FIFO不同于管道之处在于它提供一个路径名与之关联,以FIFO的文件形式存在于文件系统中。这样,即
使与FIFO的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过FIFO相互通信(能够访问该路径的进程以及FIFO的创建进程之
间),因此,通过FIFO不相关的进程也能交换数据。值得注意的是,FIFO严格遵循先进先出(first in first
out),对管道及FIFO的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。
      
2.2有名管道的创建
      

      #include
#include
int mkfifo(const char * pathname, mode_t mode)

      
该函数的第一个参数是一个普通的路径名,也就是创建
后FIFO的名字。第二个参数与打开普通文件的open()函数中的mode 参数相同。
如果mkfifo的第一个参数是一个已经存在的路径名时,会返回EEXIST错误,所以一般典型的调用代码首先会检查是否返回该错误,如果确实返回该错
误,那么只要调用打开FIFO的函数就可以了。一般文件的I/O函数都可以用于FIFO,如close、read、write等等。
      
2.3有名管道的打开规则
      
有名管道比管道多了一个打开操作:open。
      
FIFO的打开规则:
      
如果当前打开操作是为读而打开FIFO时,若已经有相应进程为写而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为写而打开该FIFO(当前打开操作设置了阻塞标志);或者,成功返回(当前打开操作没有设置阻塞标志)。
      
如果当前打开操作是为写而打开FIFO时,如果已经有相应进程为读而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为读而打开该FIFO(当前打开操作设置了阻塞标志);或者,返回ENXIO错误(当前打开操作没有设置阻塞标志)。
      
对打开规则的验证参见
        
附2

      
      
2.4有名管道的读写规则
      
从FIFO中读取数据:
      
约定:如果一个进程为了从FIFO中读取数据而阻塞打开FIFO,那么称该进程内的读操作为设置了阻塞标志的读操作。
      
  • 如果有进程写打开FIFO,且当前FIFO内没有数据,则对于设置了阻塞标志的读操作来说,将一直阻塞。对于没有设置阻塞标志读操作来说则返回-1,当前errno值为EAGAIN,提醒以后再试。
  • 对于设置了阻塞标志的读操作说,造成阻塞的原因有两种:当前FIFO内有数据,但有其它进程在读这些数据;另外就是FIFO内没有数据。解阻塞的原因则是FIFO中有新的数据写入,不论信写入数据量的大小,也不论读操作请求多少数据量。
  • 读打开的阻塞标志只对本进程第一个读操作施加作用,如果本进程内有多个读操作序列,则在第一个读操作被唤醒并完成读操作后,其它将要执行的读操作将不再阻塞,即使在执行读操作时,FIFO中没有数据也一样(此时,读操作返回0)。
  • 如果没有进程写打开FIFO,则设置了阻塞标志的读操作会阻塞。

      
注:如果FIFO中有数据,则设置了阻塞标志的读操作不会因为FIFO中的字节数小于请求读的字节数而阻塞,此时,读操作会返回FIFO中现有的数据量。
      
向FIFO中写入数据:
      
约定:如果一个进程为了向FIFO中写入数据而阻塞打开FIFO,那么称该进程内的写操作为设置了阻塞标志的写操作。
      
对于设置了阻塞标志的写操作:
      
  • 当要写入的数据量不大于PIPE_BUF时,linux将保证写入的原子性。如果此时管道空闲缓冲区不足以容纳要写入的字节数,则进入睡眠,直到当缓冲区中能够容纳要写入的字节数时,才开始进行一次性写操作。
  • 当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。FIFO缓冲区一有空闲区域,写进程就会试图向管道写入数据,写操作在写完所有请求写的数据后返回。

      
对于没有设置阻塞标志的写操作:
      
  • 当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。在写满所有FIFO空闲缓冲区后,写操作返回。
  • 当要写入的数据量不大于PIPE_BUF时,linux将保证写入的原子性。如果当前FIFO空闲缓冲区能够容纳请求写入的字节数,写完后成功返回;如果当前FIFO空闲缓冲区不能够容纳请求写入的字节数,则返回EAGAIN错误,提醒以后再写;

      
对FIFO读写规则的验证:
      
下面提供了两个对FIFO的读写程序,适当调节程序中的很少地方或者程序的命令行参数就可以对各种FIFO读写规则进行验证。
      
程序1:写FIFO的程序

      #include
#include
#include
#include
#define FIFO_SERVER "/tmp/fifoserver"
main(int argc,char** argv)
//参数为即将写入的字节数
{
        int fd;
        char w_buf[4096*2];
        int real_wnum;
        memset(w_buf,0,4096*2);
        if((mkfifo(FIFO_SERVER,O_CREAT|O_EXCL)

      
程序2:与程序1一起测试写FIFO的规则,第一个命令行参数是请求从FIFO读出的字节数

      #include
#include
#include
#include
#define FIFO_SERVER "/tmp/fifoserver"
main(int argc,char** argv)
{
        char r_buf[4096*2];
        int  fd;
        int  r_size;
        int  ret_size;
        r_size=atoi(argv[1]);
        printf("requred real read bytes %d\n",r_size);
        memset(r_buf,0,sizeof(r_buf));
        fd=open(FIFO_SERVER,O_RDONLY|O_NONBLOCK,0);
        //fd=open(FIFO_SERVER,O_RDONLY,0);
        //在此处可以把读程序编译成两个不同版本:阻塞版本及非阻塞版本
        if(fd==-1)
        {
                printf("open %s for read error\n");
                exit();       
        }
        while(1)
        {
               
                memset(r_buf,0,sizeof(r_buf));
                ret_size=read(fd,r_buf,r_size);
                if(ret_size==-1)
                        if(errno==EAGAIN)
                                printf("no data avlaible\n");
                printf("real read bytes %d\n",ret_size);
                sleep(1);
        }       
        pause();
        unlink(FIFO_SERVER);
}

      
程序应用说明:
      
把读程序编译成两个不同版本:
      
  • 阻塞读版本:br
  • 以及非阻塞读版本nbr

      
把写程序编译成两个四个版本:
      
  • 非阻塞且请求写的字节数大于PIPE_BUF版本:nbwg
  • 非阻塞且请求写的字节数不大于PIPE_BUF版本:版本nbw
  • 阻塞且请求写的字节数大于PIPE_BUF版本:bwg
  • 阻塞且请求写的字节数不大于PIPE_BUF版本:版本bw

      
下面将使用br、nbr、w代替相应程序中的阻塞读、非阻塞读
      
验证阻塞写操作:
      
  • 当请求写入的数据量大于PIPE_BUF时的非原子性:
             
    • nbr 1000
    • bwg

            
  • 当请求写入的数据量不大于PIPE_BUF时的原子性:
             
    • nbr 1000
    • bw

            
          
    验证非阻塞写操作:
          
  • 当请求写入的数据量大于PIPE_BUF时的非原子性:
             
    • nbr 1000
    • nbwg

            
  • 请求写入的数据量不大于PIPE_BUF时的原子性:
             
    • nbr 1000
    • nbw

            
          
    不管写打开的阻塞标志是否设置,在请求写入的字节数大于4096时,都不保证写入的原子性。但二者有本质区别:
          
    对于阻塞写来说,写操作在写满FIFO的空闲区域后,会一直等待,直到写完所有数据为止,请求写入的数据最终都会写入FIFO;
          
    而非阻塞写则在写满FIFO的空闲区域后,就返回(实际写入的字节数),所以有些数据最终不能够写入。
          
    对于读操作的验证则比较简单,不再讨论。
          
    2.5有名管道应用实例
          
    在验证了相应的读写规则后,应用实例似乎就没有必要了。
          




    回页首
    小结:
          
    管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。
          
    FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。
          
    管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。
          
    要灵活应用管道及FIFO,理解它们的读写规则是关键。
          
            附1:kill -l 的运行结果,显示了当前系统支持的所有信号:
          
          

          1) SIGHUP         2) SIGINT         3) SIGQUIT         4) SIGILL
    5) SIGTRAP         6) SIGABRT         7) SIGBUS         8) SIGFPE
    9) SIGKILL        10) SIGUSR1        11) SIGSEGV        12) SIGUSR2
    13) SIGPIPE        14) SIGALRM        15) SIGTERM        17) SIGCHLD
    18) SIGCONT        19) SIGSTOP        20) SIGTSTP        21) SIGTTIN
    22) SIGTTOU        23) SIGURG        24) SIGXCPU        25) SIGXFSZ
    26) SIGVTALRM        27) SIGPROF        28) SIGWINCH        29) SIGIO
    30) SIGPWR        31) SIGSYS        32) SIGRTMIN        33) SIGRTMIN+1
    34) SIGRTMIN+2        35) SIGRTMIN+3        36) SIGRTMIN+4        37) SIGRTMIN+5
    38) SIGRTMIN+6        39) SIGRTMIN+7        40) SIGRTMIN+8        41) SIGRTMIN+9
    42) SIGRTMIN+10        43) SIGRTMIN+11        44) SIGRTMIN+12        45) SIGRTMIN+13
    46) SIGRTMIN+14        47) SIGRTMIN+15        48) SIGRTMAX-15        49) SIGRTMAX-14
    50) SIGRTMAX-13        51) SIGRTMAX-12        52) SIGRTMAX-11        53) SIGRTMAX-10
    54) SIGRTMAX-9        55) SIGRTMAX-8        56) SIGRTMAX-7        57) SIGRTMAX-6
    58) SIGRTMAX-5        59) SIGRTMAX-4        60) SIGRTMAX-3        61) SIGRTMAX-2
    62) SIGRTMAX-1        63) SIGRTMAX       

          
    除了在此处用来说明管道应用外,接下来的专题还要对这些信号分类讨论。
          
            附2:对FIFO打开规则的验证(主要验证写打开对读打开的依赖性)
          
          

          #include
    #include
    #include
    #include
    #define FIFO_SERVER "/tmp/fifoserver"
    int handle_client(char*);
    main(int argc,char** argv)
    {
            int r_rd;
            int w_fd;
            pid_t pid;
            if((mkfifo(FIFO_SERVER,O_CREAT|O_EXCL)

       
    参考资料
          
    • UNIX网络编程第二卷:进程间通信,作者:W.Richard Stevens,译者:杨继张,清华大学出版社。丰富的UNIX进程间通信实例及分析,对Linux环境下的程序开发有极大的启发意义。
    • linux内核源代码情景分析(上、下),毛德操、胡希明著,浙江大学出版社,当要验证某个结论、想法时,最好的参考资料;
    • UNIX环境高级编程,作者:W.Richard Stevens,译者:尤晋元等,机械工业出版社。具有丰富的编程实例,以及关键函数伴随Unix的发展历程。

    •          
      http://www.linux.org.tw/CLDP/gb/Secure-Programs-HOWTO/x346.html
      点明linux下sigaction的实现基础,linux源码../kernel/signal.c更说明了问题;
              
    • pipe手册,最直接而可靠的参考资料
    • fifo手册,最直接而可靠的参考资料

       
    关于作者


    郑彦兴,男,现攻读国防科大计算机学院网络方向博士学位。您可以通过电子邮件
            
    [email=mlinux@163.com?cc=]mlinux@163.com[/email]
    和他联系。
          
                   
                   
                   

    本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u1/43662/showart_2135468.html
  • 您需要登录后才可以回帖 登录 | 注册

    本版积分规则 发表回复

      

    北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
    未成年举报专区
    中国互联网协会会员  联系我们:huangweiwei@itpub.net
    感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

    清除 Cookies - ChinaUnix - Archiver - WAP - TOP