免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 631 | 回复: 0
打印 上一主题 下一主题

位运算应用口诀 (转) [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2007-12-06 14:40 |只看该作者 |倒序浏览
位运算应用口诀
清零取反要用与,某位置一可用或
若要取反和交换,轻轻松松用异或
移位运算
要点 1 它们都是双目运算符,两个运算分量都是整形,结果也是整形。
     2 "
     3 ">>"右移:右边的位被挤掉。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。
     4 ">>>"运算符,右边的位被挤掉,对于左边移出的空位一概补上0。
位运算符的应用 (源操作数s 掩码mask)
(1) 按位与-- &
1 清零特定位 (mask中特定位置0,其它位为1,s=s&mask)
2 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask)
(2) 按位或-- |
    常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask)
(3) 位异或-- ^
1 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask)
2 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1)
    目 标           操 作              操作后状态
a=a1^b1         a=a^b              a=a1^b1,b=b1
b=a1^b1^b1      b=a^b              a=a1^b1,b=a1
a=b1^a1^a1      a=a^b              a=b1,b=a1
二进制补码运算公式:
-x = ~x + 1 = ~(x-1)
~x = -x-1
-(~x) = x+1
~(-x) = x-1
x+y = x - ~y - 1 = (x|y)+(x&y)
x-y = x + ~y + 1 = (x|~y)-(~x&y)
x^y = (x|y)-(x&y)
x|y = (x&~y)+y
x&y = (~x|y)-~x
x==y:    ~(x-y|y-x)
x!=y:    x-y|y-x
x
x
x
x
应用举例
(1) 判断int型变量a是奇数还是偶数            
a&1   = 0 偶数
       a&1 =   1 奇数
(2) 取int型变量a的第k位 (k=0,1,2……sizeof(int)),即a>>k&1
(3) 将int型变量a的第k位清0,即a=a&~(1
(4) 将int型变量a的第k位置1, 即a=a|(1
(5) int型变量循环左移k次,即a=a>16-k   (设sizeof(int)=16)
(6) int型变量a循环右移k次,即a=a>>k|a
(7)整数的平均值
对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法:
int average(int x, int y)   //返回X,Y 的平均值
{   
     return (x&y)+((x^y)>>1);
}
(8)判断一个整数是不是2的幂,对于一个数 x >= 0,判断他是不是2的幂
boolean power2(int x)
{
    return ((x&(x-1))==0)&&(x!=0);
}
(9)不用temp交换两个整数
void swap(int x , int y)
{
    x ^= y;
    y ^= x;
    x ^= y;
}
(10)计算绝对值
int abs( int x )
{
int y ;
y = x >> 31 ;
return (x^y)-y ;        //or: (x+y)^y
}
(11)取模运算转化成位运算 (在不产生溢出的情况下)
         a % (2^n) 等价于 a & (2^n - 1)
(12)乘法运算转化成位运算 (在不产生溢出的情况下)
         a * (2^n) 等价于 a
(13)除法运算转化成位运算 (在不产生溢出的情况下)
         a / (2^n) 等价于 a>> n
        例: 12/8 == 12>>3
(14) a % 2 等价于 a & 1        
(15) if (x == a) x= b;
            else x= a;
        等价于 x= a ^ b ^ x;
(16) x 的 相反数 表示为 (~x+1)


本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u1/51591/showart_437277.html
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP