免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 919 | 回复: 0
打印 上一主题 下一主题

ucLinux内核移植相关代码分析(2) [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2007-05-18 10:09 |只看该作者 |倒序浏览

[color="#0000ff"]5.2.6 paging_init(&meminfo, mdesc)
      创建内核页表,映射所有物理内存和IO空间,对于不同的处理器,该函数差别比较大。下面简单描述一下ARM体系结构的存储系统及MMU相关的概念。
     
在ARM
存储系统中,使用内存管理单元(MMU)实现虚拟地址到实际物理地址的映射。利用MMU,可把SDRAM的地址完全映射到0x0起始的一片连续地址空间,
而把原来占据这片空间的FLASH或者ROM映射到其他不相冲突的存储空间位置。例如,FLASH的地址从0x0000
0000~0x00FFFFFF,而SDRAM的地址范围是0x3000 0000~0x3lFFFFFF,则可把SDRAM地址映射为0x0000
0000~0xlFFFFFF,而FLASH的地址可以映射到0x9000
0000~0x90FFFFFF(此处地址空间为空闲,未被占用)。映射完成后,如果处理器发生异常,假设依然为IRQ中断,PC指针指向0xl8处的地
址,而这个时候PC实际上是从位于物理地址的0x3000
0018处读取指令。通过MMU的映射,则可实现程序完全运行在SDRAM之中。在实际的应用中.可能会把两片不连续的物理地址空间分配给SDRAM。而
在操作系统中,习惯于把SDRAM的空间连续起来,方便内存管理,且应用程序申请大块的内存时,操作系统内核也可方便地分配。通过MMU可实现不连续的物
理地址空间映射为连续的虚拟地址空间。操作系统内核或者一些比较关键的代码,一般是不希望被用户应用程序访问。通过MMU可以控制地址空间的访问权限,从
而保护这些代码不被破坏。
     
MMU的实现过程,实际上就是一个查表映射的过程。建立页表是实现MMU功能不可缺少的一步。页表位于系统的内存中,页表的每一项对应于一个虚拟地址到物
理地址的映射。每一项的长度即是一个字的长度(在ARM中,一个字的长度被定义为4Bytes)。页表项除完成虚拟地址到物理地址的映射功能之外,还定义
了访问权限和缓冲特性等。
      MMU的映射分为两种,一级页表的变换和二级页表变换。两者的不同之处就是实现的变换地址空间大小不同。一级页表变换支持1 M大小的存储空间的映射,而二级可以支持64 kB,4 kB和1 kB大小地址空间的映射。
动态表(页表)的大小=表项数*每个表项所需的位数,即为整个内存空间建立索引表时,需要多大空间存放索引表本身。
表项数=虚拟地址空间/每页大小
每个表项所需的位数=Log(实际页表数)+适当控制位数
实际页表数 =物理地址空间/每页大小
下面分析paging_init()函数的代码。
在paging_init中分配起始页(即第0页)地址:
zero_page = 0xCXXXXXXX
memtable_init(mi);
如果当前微处理器带有MMU,则为系统内存创建页表;如果当前微处理器不支持MMU,比如ARM7TDMI上移植uCLinux操作系统时,则不需要此类
步骤。可以通过如下一个宏定义实现灵活控制,对于带有MMU的微处理器而言,memtable_init(mi)是paging_init()中最重要的
函数。
#ifndef CONFIG_UCLINUX
/* initialise the page tables. */
memtable_init(mi);
……(此处省略若干代码)
free_area_init_node(node, pgdat, 0, zone_size,
bdata->node_boot_start, zhole_size);
}
#else /* 针对不带MMU微处理器 */
{
/*****************************************************/
定义物理内存区域管理
/*****************************************************/
unsigned long zone_size[MAX_NR_ZONES] = {0,0,0};
zone_size[ZONE_DMA] = 0;
zone_size[ZONE_NORMAL] = (END_MEM - PAGE_OFFSET) >> PAGE_SHIFT;
free_area_init_node(0, NULL, NULL, zone_size, PAGE_OFFSET, NULL);
}
#endif
uCLinux与其它嵌入式Linux最大的区别就是MMU管理这一块,从上面代码就明显可以看到这点区别。下面继续讨论针对带MMU的微处理器的内存管理。
void __init memtable_init(struct meminfo *mi)
{
struct map_desc *init_maps, *p, *q;
unsigned long address = 0;
int i;
init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
/*******************************************************/
其中map_desc定义为:
struct map_desc {
unsigned long virtual;
unsigned long physical;
unsigned long length;
int domain:4, // 页表的domain
prot_read:1, // 读保护标志
prot_write:1, // 写保护标志
cacheable:1, // 是否使用cache
bufferable:1, // 是否使用write buffer
last:1; //空
};init_maps /* map_desc是区段及其属性的定义 */
下面代码对meminfo的区段进行遍历,在嵌入式系统中列举所有可映射的内存,例如32M SDRAM, 4M FLASH等,用meminfo记录这些内存区段。同时填写init_maps 中的各项内容。meminfo结构如下:
struct meminfo {
int nr_banks;
unsigned long end;
struct {
unsigned long start;
unsigned long size;
int node;
} bank[NR_BANKS];
};
/********************************************************/
for (i = 0; i nr_banks; i++)
{
if (mi->bank.size == 0)
continue;
p->physical = mi->bank.start;
p->virtual = __phys_to_virt(p->physical);
p->length = mi->bank.size;
p->domain = DOMAIN_KERNEL;
p->prot_read = 0;
p->prot_write = 1;
p->cacheable = 1; //使用Cache
p->bufferable = 1; //使用write buffer
p ++; //下一个区段
}
/* 如果系统存在FLASH,执行以下代码 */
#ifdef FLUSH_BASE
p->physical = FLUSH_BASE_PHYS;
p->virtual = FLUSH_BASE;
p->length = PGDIR_SIZE;
p->domain = DOMAIN_KERNEL;
p->prot_read = 1;
p->prot_write = 0;
p->cacheable = 1;
p->bufferable = 1;
p ++;
#endif
/***********************************************************/
接下来的代码是逐个区段建立页表
/***********************************************************/
q = init_maps;
do {
if (address virtual || q == p) {
/*******************************************************************************/
由于内核空间是从某个地址开始,如0xC0000000,所以0xC000 0000 以前的页表项全部清空
clear_mapping在mm-armv.c中定义,其中clear_mapping()是个宏,根据处理器的不同,可以被展开为如下代码
cpu_XXX_set_pmd(((pmd_t *)(((&init_mm )->pgd+ (( virt) >> 20 )))),((pmd_t){( 0 )}));

中init_mm为内核的mm_struct,pgd指向
swapper_pg_dir,在arch/arm/kernel/init_task.c中定义。cpu_XXX_set_pmd定义在
proc_armXXX.S文件中,参见ENTRY(cpu_XXX_set_pmd) 处代码。
/*********************************************************************************/
clear_mapping(address);
/* 每个表项增加1M */
address += PGDIR_SIZE;
} else {
/* 构建内存页表 */
create_mapping(q);
address = q->virtual + q->length;
address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
q ++;
}
} while (address != 0);
/ * create_mapping函数也在mm-armv.c中定义 */
static void __init create_mapping(struct map_desc *md)
{
unsigned long virt, length;
int prot_sect, prot_pte;
long off;
/*******************************************************************************/
大部分应用中均采用1级section模式的地址映射,一个section的大小为1M,也就是说从逻辑地址到物理地址的转变是这样的一个过程:

个32位的地址,高12位决定了该地址在页表中的index,这个index的内容决定了该逻辑section对应的物理section;低20位决定了
该地址在section中的偏移(index)。例如:从0x0~0xFFFFFFFF的地址空间总共可以分成0x1000(4K)个
section(每个section大小为1M),页表中每项的大小为32个bit,因此页表的大小为0x4000(16K)。
每个页表项的内容如下:
bit: 31 20 19 12 11 10 9 8 5 4 3 2 1 0
content: Section对应的物理地址 NULL AP 0 Domain 1 C B 1 0
最低两位(10)是section分页的标识。
AP:Access Permission,区分只读、读写、SVC&其它模式。
Domain:每个section都属于某个Domain,每个Domain的属性由寄存器控制。一般都只要包含两个Domain,一个可访问地址空间; 另一个不可访问地址空间。
C、B:这两位决定了该section的cache&write buffer属性,这与该段的用途(RO or RW)有密切关系。不同的用途要做不同的设置。
C B 具体含义
0 0 无cache,无写缓冲,任何对memory的读写都反映到总线上。对 memory 的操作过程中CPU需要等待。
0 1 无cache,有写缓冲,读操作直接反映到总线上。写操作CPU将数据写入到写缓冲后继续运行,由写缓冲进行写回操作。
1 0 有cache,写通模式,读操作首先考虑cache hit;写操作时直接将数据写入写缓冲,如果同时出现cache hit,那么也更新cache。
1 1 有cache,写回模式,读操作首先考虑cache hit;写操作也首先考虑cache hit。
由于ARM中section表项的权限位和page表项的位置不同, 以下代码根据struct map_desc 中的保护标志,分别计算页表项中的AP, Domain和CB标志位。
/*******************************************************************************/
prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
(md->prot_read ? L_PTE_USER : 0) |
(md->prot_write ? L_PTE_WRITE : 0) |
(md->cacheable ? L_PTE_CACHEABLE : 0) |
(md->bufferable ? L_PTE_BUFFERABLE : 0);
prot_sect = PMD_TYPE_SECT | PMD_DOMAIN(md->domain) |
(md->prot_read ? PMD_SECT_AP_READ : 0) |
(md->prot_write ? PMD_SECT_AP_WRITE : 0) |
(md->cacheable ? PMD_SECT_CACHEABLE : 0) |
(md->bufferable ? PMD_SECT_BUFFERABLE : 0);
/********************************************************************/
设置虚拟地址,偏移地址和内存length
/********************************************************************/
virt = md->virtual;
off = md->physical - virt;
length = md->length;
/********************************************************************/
建立虚拟地址到物理地址的映射
/********************************************************************/
while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
alloc_init_page(virt, virt + off, md->domain, prot_pte);
virt += PAGE_SIZE;
length -= PAGE_SIZE;
}
while (length >= PGDIR_SIZE) {
alloc_init_section(virt, virt + off, prot_sect);
virt += PGDIR_SIZE;
length -= PGDIR_SIZE;
}
while (length >= PAGE_SIZE) {
alloc_init_page(virt, virt + off, md->domain, prot_pte);
virt += PAGE_SIZE;
length -= PAGE_SIZE;
}
/*************************************************************************/
create_mapping的作用是设置虚地址virt 到物理地址virt + off_set的映射页目录和页表。
/*************************************************************************/
/* 映射中断向量表区域 */
init_maps->physical = virt_to_phys(init_maps);
init_maps->virtual = vectors_base();
init_maps->length = PAGE_SIZE;
init_maps->domain = DOMAIN_USER;
init_maps->prot_read = 0;
init_maps->prot_write = 0;
init_maps->cacheable = 1;
init_maps->bufferable = 0;
create_mapping(init_maps);
中断向量表的虚地址init_maps,是用alloc_bootmem_low_pages分配的,通常是在PAGE_OFF+0x8000前面
的某一页,
vectors_base()是个宏,ARM规定中断向量表的地址只能是0或0xFFFF0000,所以上述代码映射一页到0或0xFFFF0000,中
断处理程序中的部分代码也被拷贝到这一页中。
[color="#993300"]5.3 parse_options()
分析由内核引导程序发送给内核的启动选项,在初始化过程中按照某些选项运行,并将剩余部分传送给init进程。这些选项可能已经存储在配置文件中,也可能是由用户在系统启动时敲入的。但内核并不关心这些,这些细节都是内核引导程序关注的内容,嵌入式系统更是如此。
[color="#993300"]5.4 trap_init()
这个函数用来做体系相关的中断处理的初始化,
在该函数中调用__trap_init((void *)vectors_base())函数将exception
vector设置到vectors_base开始的地址上。__trap_init函数位于entry-armv.S文件中,对于ARM处理器,共有复
位、未定义指令、SWI、预取终止、数据终止、IRQ和FIQ几种方式。SWI主要用来实现系统调用,而产生了IRQ之后,通过exception
vector进入中断处理过程,执行do_IRQ函数。
armnommu的trap_init()函数在
arch/armnommu/kernel/traps.c文件中。vectors_base是写中断向量的开始地址,在include/asm-
armnommu/proc-armv/system.h文件中设置,地址为0或0XFFFF0000。
ENTRY(__trap_init)
stmfd sp!, {r4 - r6, lr}
mrs r1, cpsr @ code from 2.0.38
bic r1, r1, #MODE_MASK @ clear mode bits /* 设置svc模式,disable IRQ,FIQ */
orr r1, r1, #I_BIT|F_BIT|MODE_SVC @ set SVC mode, disable IRQ,FIQ
msr cpsr, r1
adr r1, .LCvectors @ set up the vectors
ldmia r1, {r1, r2, r3, r4, r5, r6, ip, lr}
stmia r0, {r1, r2, r3, r4, r5, r6, ip, lr} /* 拷贝异常向量 */
add r2, r0, #0x200
adr r0, __stubs_start @ copy stubs to 0x200
adr r1, __stubs_end
1: ldr r3, [r0], #4
str r3, [r2], #4
cmp r0, r1
blt 1b
LOADREGS(fd, sp!, {r4 - r6, pc})
__stubs_start到__stubs_end的地址中包含了异常处理的代码,因此拷贝到vectors_base+0x200的位置上。
[color="#993300"]5.5 init_IRQ()
void __init init_IRQ(void)
{
extern void init_dma(void);
int irq;
for (irq = 0; irq  action 就是串行化执行软中断,当bh
的tasklet_struct 链入的时候,就能在这里执行,在bh里重新锁定了所有CPU,导致一个时间只有一个CPU可以执行bh
函数,但是do_softirq()是可以在多CPU
上同时执行的。而每个tasklet_struct在一个时间上是不会出现在两个CPU上的。另外,只有当Linux初始化完成开启中断后,中断系统才可
以开始工作。
[color="#993300"]5.8 time_init()
这个函数用来做体系相关的timer的初始
化,armnommu的在
arch/armnommu/kernel/time.c。这里调用了在include/asm-armnommu/arch-xxxx/time.h中
的inline函数setup_timer,setup_timer()函数的设计与硬件设计紧密相关,主要是根据硬件设计情况设置时钟中断号和时钟频率
等。
void __inline__ setup_timer (void)
{
/*----- disable timer -----*/
CSR_WRITE(TCR0, xxx);
CSR_WRITE (AIC_SCR7, xxx); /* setting priority level to high */
/* timer 0: 100 ticks/sec */
CSR_WRITE(TICR0, xxx);
timer_irq.handler = xxxxxx_timer_interrupt;
setup_arm_irq(IRQ_TIMER, &timer_irq); /* IRQ_TIMER is the interrupt number */
INT_ENABLE(IRQ_TIMER);
/* Clear interrupt flag */
CSR_WRITE(TISR, xxx);
/* enable timer */
CSR_WRITE(TCR0, xxx);
}
[color="#993300"]5.9 console_init()
控制台初始化。控制台也是一种驱动程
序,由于其特殊性,提前到该处完成初始化,主要是为了提前看到输出信息,据此判断内核运行情况。很多嵌入式Linux操作系统由于没有在/dev目录下正
确配置console设备,造成启动时发生诸如unable to open an initial console的错误。
/*******************************************************************************/
init_modules()函数到smp_init()函数之间的代码一般不需要作修改,
如果平台具有特殊性,也只需对相关函数进行必要修改。
这里简单注明了一下各个函数的功能,以便了解。
/*******************************************************************************/
[color="#993300"]5.10 init_modules()
模块初始化。如果编译内核时使能该选项,则内核支持模块化加载/卸载功能
[color="#993300"]5.11 kmem_cache_init()
内核Cache初始化。
[color="#993300"]5.12 sti()
使能中断,这里开始,中断系统开始正常工作。
[color="#993300"]5.13 calibrate_delay()
近似计算BogoMIPS数字
的内核函数。作为第一次估算,calibrate_delay计算出在每一秒内执行多少次__delay循环,也就是每个定时器滴答(timer
tick)―百分之一秒内延时循环可以执行多少次。这种计算只是一种估算,结果并不能精确到纳秒,但这个数字供内核使用已经足够精确了。
BogoMIPS的数字由内核计算并在系统初始化的时候打印。它近似的给出了每秒钟CPU可以执行一个短延迟循环的次数。在内核中,这个结果主要用于需要等待非常短周期的设备驱动程序――例如,等待几微秒并查看设备的某些信息是否已经可用。

算一个定时器滴答内可以执行多少次循环需要在滴答开始时就开始计数,或者应该尽可能与它接近。全局变量jiffies中存储了从内核开始保持跟踪时间开始
到现在已经经过的定时器滴答数,
jiffies保持异步更新,在一个中断内——每秒一百次,内核暂时挂起正在处理的内容,更新变量,然后继续刚才的工作。
[color="#993300"]5.14 mem_init()
内存初始化。本函数通过内存碎片的重组等方法标记当前剩余内存, 设置内存上下界和页表项初始值。
[color="#993300"]5.15 kmem_cache_sizes_init()
内核内存管理器的初始化,也就是初始化cache和SLAB分配机制。
[color="#993300"]5.16 pgtable_cache_init()
页表cache初始化。
[color="#993300"]5.17 fork_init()
这里根据硬件的内存情况,如果计算出的max_threads数量太大,可以自行定义。
[color="#993300"]5.18 proc_caches_init();
为proc文件系统创建高速缓冲
[color="#993300"]5.19 vfs_caches_init(num_physpages);
为VFS创建SLAB高速缓冲
[color="#993300"]5.20 buffer_init(num_physpages);
初始化buffer
[color="#993300"]5.21 page_cache_init(num_physpages);
页缓冲初始化
[color="#993300"]5.22 signals_init();
创建信号队列高速缓冲
[color="#993300"]5.23 proc_root_init();
在内存中创建包括根结点在内的所有节点
[color="#993300"]5.24 check_bugs();
检查与处理器相关的bug
[color="#993300"]5.25 smp_init();
[color="#993300"]5.26 rest_init(); 此函数调用kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL)函数。
[color="#0000ff"]5.26.1 kernel_thread()函数分析
这里调用了
arch/armnommu/kernel/process.c中的函数kernel_thread,kernel_thread函数中通过
__syscall(clone)
创建新线程。__syscall(clone)函数参见armnommu/kernel目录下的entry-common.S文件。
[color="#0000ff"]5.26.2 init()完成下列功能:
Init()函数通过kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL)的回调函数执行,完成下列功能。
do_basic_setup()
在该函数里,sock_init()函数进行网络相关的初始化,占用相当多的内存,如果所开发系统不支持网络功能,可以把该函数的执行注释掉。
do_initcalls()实现驱动的初始化, 这里需要与vmlinux.lds联系起来看才能明白其中奥妙。
static void __init do_initcalls(void)
{
  initcall_t *call;
  call = &__initcall_start;
  do {
   (*call)();
   call++;
  } while (call
  • __init
    标示符在gcc编译器中指定将该函数置于内核的特定区域。在内核完成自身初始化之后,就试图释放这个特定区域。实际上,内核中存在两个这样的区域,.
    text.init和.data.init――第一个是代码初始化使用的,另外一个是数据初始化使用的。另外也可以看到__initfunc和
    __initdata标志,前者和__init类似,标志初始化专用代码,后者则标志初始化专用数据。
  • System.map内核符号表
  • irq的处理过程
  • Linux内核调度过程
                   
                   
                   

    本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u/29191/showart_303866.html
  • 您需要登录后才可以回帖 登录 | 注册

    本版积分规则 发表回复

      

    北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
    未成年举报专区
    中国互联网协会会员  联系我们:huangweiwei@itpub.net
    感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

    清除 Cookies - ChinaUnix - Archiver - WAP - TOP