- 论坛徽章:
- 1
|
本帖最后由 lost_templar 于 2015-06-15 20:36 编辑
这一阵子折腾 C++14,练手的时候把自己之前写过的一个 生成非均匀随机变量的库重构了一下,还没有搞完,记录了重构的大概过程,先发过来大家瞧瞧。
https://github.com/fengwang/vg
标准组件 (Stardard Components)
Seed
写一个函数,这个函数返回一个随机整数。
Write a function that returns a random integer.
- inline auto make_seed() noexcept
- {
- typedef std::uint_fast64_t seed_type;
- auto const now = std::chrono::system_clock::now();
- auto const duration = now.time_since_epoch();
- seed_type const nano_seed = std::chrono::duration_cast<std::chrono::nanoseconds>(duration).count();
- seed_type const random_address = reinterpret_cast<seed_type>( &nano_seed );
- seed_type ans = nano_seed + ( random_address | (random_address << 32) );
- ans = ( ans & 0x5555555555555555ULL ) << 1 | ( ans & 0xAAAAAAAAAAAAAAAAULL ) >> 1;
- ans = ( ans & 0x3333333333333333ULL ) << 2 | ( ans & 0xCCCCCCCCCCCCCCCCULL ) >> 2;
- ans = ( ans & 0x0F0F0F0F0F0F0F0FULL ) << 4 | ( ans & 0xF0F0F0F0F0F0F0F0ULL ) >> 4;
- ans = ( ans & 0x00FF00FF00FF00FFULL ) << 8 | ( ans & 0xFF00FF00FF00FF00ULL ) >> 8;
- ans = ( ans & 0x0000FFFF0000FFFFULL ) << 16 | ( ans & 0xFFFF0000FFFF0000ULL ) >> 16;
- ans = ( ans & 0x00000000FFFFFFFFULL ) << 32 | ( ans & 0xFFFFFFFF00000000ULL ) >> 32;
- ans ^= nano_seed;
- return ans;
- }
复制代码 引擎 -- Engine
写一个函数,这个函数返回另外一个函数,返回的函数被调用后返回一个在 [0,1] 区间服从均匀分布的随机数。
Write a function that return a function that returns a random variate that uniformly distributed in range [0,1].
- inline auto linear_congruential() noexcept
- {
- static const std::uint_fast64_t a_ = 6364136223846793005ULL;
- static const std::uint_fast64_t c_ = 1442695040888963407ULL;
- std::uint_fast64_t x_ = make_seed();
- return [=]() mutable noexcept
- {
- x_ *= a_;
- x_ += c_;
- return static_cast<long double>( x_ ) / static_cast<long double>( std::numeric_limits<std::uint_fast64_t>::max() );
- };
- }
复制代码 Reference
D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89684-2. Section 3.2.1: The Linear Congruential Method, pp. 10–26.
分布 -- Distribution
正态分布 -- Normal
写一个函数,这个函数返回一个函数 g, g 返回一个函数 h,h 接收一个函数 e 作为参数,h 返回一个服从 N(0,1) 分布的随机数,而作为函数 h 参数的函数 e 被调用后会返回一个在区间 [0,1] 上服从均匀分布的随机数。
Write a function that returns a function that takes a function, which returns a random variate uniform in range [0,1], and returns a variate that is subject to N(0,1).
- inline auto normal() noexcept
- {
- return []() noexcept
- {
- return []( auto& engine ) noexcept
- {
- long double const one = 1;
- for (;;)
- {
- auto const u1 = engine();
- auto const u2 = engine();
- auto const v1 = u1 + u1 - one;
- auto const v2 = u2 + u2 - one;
- auto const s = v1 * v1 + v2 * v2;
- if ( s < one )
- {
- auto const tmp = -std::log( s );
- return v1 * std::sqrt(( tmp + tmp ) / s );
- }
- }
- };
- };
- }
复制代码 Reference
G. E. P. Box and Mervin E. Muller, A Note on the Generation of Random Normal Deviates, The Annals of Mathematical Statistics (195 , Vol. 29, No. 2 pp. 610-611
均匀分布 -- Uniform
仿照正态分布的生成函数,写一个在区间 [lower, upper] 上服从均匀分布的函数。
Write a uniform ditribution function defined in range [lower, upper].
- auto inline uniform() noexcept
- {
- return []( auto lower, auto upper ) noexcept
- {
- return [=]( auto& engine ) noexcept
- {
- return engine() * ( upper - lower ) + lower;
- };
- };
- }
复制代码 Generator
写一个函数,这个函数接收两个参数,第一个参数是一个生成具体随机变量分布 F 的算法的函数 f(分布),第二个参数是一个生成在 [0,1] 区间服从均匀分布随机数的函数 g(引擎), 返回一个函数 h,h 接收任意数量的参数并返回一个函数 i,i 被调用后组合 f 与 g 生成服从 F 分布的随机变量。
Write a function that takes two functions as parameters, the first one for a specified distribution F, the second one is an engine generating uniform random variates in range [0,1], returns a function that takes arbitrary parameters and returns a function that returns a random variate subject to distribution F.
- template< typename Distribution, typename Engine >
- auto make_generator( Distribution distribution, Engine engine ) noexcept
- {
- auto engine_ = engine();
- return [=]( auto ... args ) mutable noexcept
- {
- return [=]() mutable noexcept
- {
- return distribution()( args... )( engine_ );
- };
- };
- }
复制代码 如果 Generator 的引擎没有指定,缺省使用 linear_congruential 引擎。
If the engine parameter for the make_generator is not specified, use linear_congruential.
- template< typename Distribution >
- auto make_generator( Distribution distribution ) noexcept
- {
- return make_generator( distribution, mitchell_moore );
- }
复制代码 Test:
- //normal_test.cc
- auto v = make_generator(normal)();
- map<int, int> sample;
- for ( unsigned long int i = 0; i != 500; ++i )
- sample[static_cast<int>(round(4.0*v()))]++;
- for ( auto element : sample )
- {
- cout << "\n" << element.first << "\t";
- for ( auto j = 0; j < element.second; ++j ) cout << "*";
- }
复制代码 Output:
- -13 *
- -12 *
- -10 **
- -9 *******
- -8 ******
- -7 ***************
- -6 ********************
- -5 ******************
- -4 *******************************
- -3 ************************************
- -2 *****************************************
- -1 *********************************************
- 0 *******************************************************
- 1 *************************************************
- 2 ******************************************
- 3 *******************************************
- 4 *****************************
- 5 ***************************
- 6 ********
- 7 ****
- 8 ***********
- 9 ****
- 10 **
复制代码 其他引擎 -- More Engines
mt19937
- inline auto mt19937() noexcept
- {
- std::uint_fast64_t mt[312];
- std::uint_fast64_t mag01[2];
- std::size_t mti;
- mt[0] = make_seed();
- mag01[0] = 0ULL;
- mag01[1] = 0xB5026F5AA96619E9ULL;
- for ( mti = 1; mti < 312; ++mti )
- {
- mt[mti] = 6364136223846793005ULL * ( mt[mti-1] ^( mt[mti-1] >> 62 ) );
- mt[mti] += mti;
- }
- return [=]() mutable noexcept
- {
- std::uint_fast64_t x;
- if ( mti > 311 )
- {
- for ( std::size_t i = 0; i < 156; ++i )
- {
- x = ( mt[i] & 0xFFFFFFFF80000000ULL ) | ( mt[i+1] & 0x7FFFFFFFULL );
- mt[i] = mt[i+156] ^( x >> 1 ) ^ mag01[x&1];
- }
- for ( std::size_t i = 156; i < 311; ++i )
- {
- x = ( mt[i] & 0xFFFFFFFF80000000ULL ) | ( mt[i+1] & 0x7FFFFFFFULL );
- mt[i] = mt[i-156] ^( x >> 1 ) ^ mag01[x&1];
- }
- x = ( mt[311] & 0xFFFFFFFF80000000ULL ) | ( mt[0] & 0x7FFFFFFFULL );
- mt[311] = mt[155] ^( x >> 1 ) ^ mag01[x&1];
- mti = 0;
- }
- x = mt[mti++];
- x ^= ( x >> 29 ) & 0x5555555555555555ULL;
- x ^= ( x << 17 ) & 0x71D67FFFEDA60000ULL;
- x ^= ( x << 37 ) & 0xFFF7EEE000000000ULL;
- x ^= ( x >> 43 );
- return static_cast<long double>( x ) / static_cast<long double>( std::numeric_limits<std::uint_fast64_t>::max() );
- };
- }
复制代码 Reference
Makoto Matsumoto, Takuji Nishimura: Mersenne twister. A 623-dimensionally equidistributed uniform pseudorandom number generator. In: ACM Transactions on Modeling and Computer Simulation. 8, 1998, ISSN 1049-3301, S. 3–30.
lagged_fibonacci
- inline auto lagged_fibonacci() noexcept
- {
- std::uint_fast64_t data[44497];
- std::size_t mti = make_seed() % 21034;
- data[0] = 1;
- data[1] = 1;
- for ( std::size_t index = 2; index != 44497; ++index )
- data[index] = data[index-2] + data[index-1];
- return[=]() mutable noexcept
- {
- if ( mti > 21034 )
- {
- mti = 0;
- std::copy( data+21034, data+44497, data );
- for ( std::size_t index = 23463; index != 44497; ++index ) data[index] = data[index-2] + data[index-1];
- }
- auto const mtj = mti + 23463;
- auto const x = data[mti++] + data[mtj];
- auto const ans = static_cast<long double>( x ) / static_cast<long double>( std::numeric_limits<std::uint_fast64_t>::max() );
- return ans;
- };
- }
复制代码 Reference
A New Class of Random Number Generators, George Marsaglia and Arif Zaman, The Annals of Applied Probability, Vol. 1, No. 3, 1991
其他非均匀分布 -- More Non-Uniform Distributions
If not specified, the reference for the distribution generator is
Devroye, Luc 1986, Non-Uniform Random Variate Generation. New York: Springer-Verlag.
gaussian
- inline auto gaussian() noexcept
- {
- return []( auto mean, auto variance ) noexcept
- {
- return [=]( auto& engine ) noexcept
- {
- long double const normal_ = normal()()( engine );
- return normal_ * variance + mean;
- };
- };
- }
复制代码 当均值为 0, 方差为 1 的时候,高斯分布退化为正态分布。
Normal distribution is a special case of Gaussian distribution when the average is 0 and the variance is 1.
Test:
- auto v = vg::make_generator(vg::gaussian, vg::mt19937)( 0.0, 4.0 );
- map< int, int > sample;
- for ( unsigned long int i = 0; i != 500; ++i )
- sample[static_cast<int>(round(v()))]++;
- for ( auto i = sample.begin(); i != sample.end(); ++i )
- {
- cout << "\n" << (*i).first << "\t";
- for ( auto j = 0; j < (*i).second; ++j ) cout << "*";
- }
复制代码 Output:
- -12 *
- -11 *
- -10 **
- -9 *********
- -8 *******
- -7 *********
- -6 *******************
- -5 **************************
- -4 **************************
- -3 *********************************************
- -2 *****************************************
- -1 **********************************************
- 0 **********************************************************
- 1 ****************************************
- 2 ******************************************
- 3 *************************************
- 4 *********************************
- 5 *****************************
- 6 *********
- 7 *****
- 8 *****
- 9 *****
- 10 ***
- 11 *
复制代码 gamma
- inline auto gamma() noexcept
- {
- return []( auto alpha, auto beta ) noexcept
- {
- assert( alpha > 0.0 );
- assert( beta > 0.0 );
- return [=]( auto& engine ) noexcept
- {
- long double const zero = 0.0;
- long double const one = 1.0;
- long double const three = 3.0;
- long double const a = alpha < one ? alpha + one : alpha;
- long double const d = a - one / three;
- long double const c = one / (three * std::sqrt( d ));
- long double u = zero;
- long double v = zero;
- long double x = zero;
- for ( ;; )
- {
- for ( ;; )
- {
- x = normal()()( engine );
- v = one + c * x;
- if ( v > zero ) break;
- }
- const long double xx = x * x;
- v *= v * v;
- u = engine();
- if ( u < one - 0.0331 * xx * xx )
- break;
- if ( std::log( u ) < 0.5 * xx + d * ( one - v + std::log( v ) ) )
- break;
- }
- long double tmp = d * v;
- if ( alpha < one )
- tmp *= std::pow( engine(), one / alpha );
- return tmp * beta;
- };
- };
- }
复制代码 Reference
Marsaglia and Tsang, "A Simple Method for generating gamma variables", ACM Transactions on Mathematical Software, Vol 26, No 3 (2000), p363-372.
Test:
- auto v = vg::make_generator(vg::gamma)( 1.0, 2.0 );
- map<int, int> sample;
- for ( unsigned long int i = 0; i != 100; ++i )
- sample[static_cast<int>(std::round(v()))]++;
- for ( auto element : sample )
- {
- cout << "\n" << element.first << "\t";
- for ( auto j = 0; j < element.second; ++j ) cout << "*";
- }
复制代码 Output:
- 0 ***********************************************
- 1 **************************
- 2 **********
- 3 ***
- 4 ***
- 5 ***
- 6 *****
- 8 *
- 9 *
- 11 *
复制代码 beta
- inline auto beta() noexcept
- {
- return []( auto alpha, auto beta ) noexcept
- {
- return [=]( auto& engine ) noexcept
- {
- long double one = 1.0;
- auto const a = gamma()( alpha, one )( engine );
- auto const b = gamma()( beta, one )( engine );
- return a / ( a + b );
- };
- };
- }
复制代码 如果 G_a 和 G_b 不相关,并且分别服从 gamma(a,1), gamma(b,1) 分布,那么 G_a/(G_a+G_b) 服从 beta(a,b) 分布。
If G_a and G_b are indenpendent gamma(a,1), gamma(b,1) random variables, then G_a/(G_a+G_b) is beta(a,b) distributed.
更多在 https://github.com/fengwang/vg |
|