- 论坛徽章:
- 0
|
我们接着上一节数据的接收来自看UDP的数据是如何发送的,上一节中我们贴出有关发送的代码,在那里只是为了让大家有一个印象
case SYS_SEND:
err = sys_send(a0, (void __user *)a1, a[2], a[3]);
最终我们在上一节中看到发送数据都是调用的__sock_sendmsg来完成的,朋友们忘记了可以回去看一下,我们直接贴出这个代码
static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size)
{
struct sock_iocb *si = kiocb_to_siocb(iocb);
int err;
si->sock = sock;
si->scm = NULL;
si->msg = msg;
si->size = size;
err = security_socket_sendmsg(sock, msg, size);
if (err)
return err;
return sock->ops->sendmsg(iocb, sock, msg, size);
}
代码前面对比一下接收的__sock_recvmsg,可以发现基本相同,只是不同的地方是这里调用了UDP的sendmsg来发送数据,我们再次把钩子结构贴出来
static const struct proto_ops unix_dgram_ops = {
。。。。。。
.sendmsg = unix_dgram_sendmsg,
。。。。。。
};
可以看到调用了uinx_dgram_sendmsg
static int unix_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
struct sock *sk = sock->sk;
struct net *net = sock_net(sk);
struct unix_sock *u = unix_sk(sk);
struct sockaddr_un *sunaddr=msg->msg_name;
struct sock *other = NULL;
int namelen = 0; /* fake GCC */
int err;
unsigned hash;
struct sk_buff *skb;
long timeo;
struct scm_cookie tmp_scm;
if (NULL == siocb->scm)
siocb->scm = &tmp_scm;
err = scm_send(sock, msg, siocb->scm);
if (err 0)
return err;
err = -EOPNOTSUPP;
if (msg->msg_flags&MSG_OOB)
goto out;
if (msg->msg_namelen) {
err = unix_mkname(sunaddr, msg->msg_namelen, &hash);
if (err 0)
goto out;
namelen = err;
} else {
sunaddr = NULL;
err = -ENOTCONN;
other = unix_peer_get(sk);
if (!other)
goto out;
}
if (test_bit(SOCK_PASSCRED, &sock->flags)
&& !u->addr && (err = unix_autobind(sock)) != 0)
goto out;
err = -EMSGSIZE;
if (len > sk->sk_sndbuf - 32)
goto out;
上面代码中除了象接收socket一样做了必要的检查外调用了scm_send函数
static __inline__ int scm_send(struct socket *sock, struct msghdr *msg,
struct scm_cookie *scm)
{
struct task_struct *p = current;
scm->creds.uid = p->uid;
scm->creds.gid = p->gid;
scm->creds.pid = task_tgid_vnr(p);
scm->fp = NULL;
scm->seq = 0;
unix_get_peersec_dgram(sock, scm);
if (msg->msg_controllen = 0)
return 0;
return __scm_send(sock, msg, scm);
}
这里将进程的信息设置进scm_cookie中的creds身份结构中。
int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *p)
{
struct cmsghdr *cmsg;
int err;
for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg))
{
err = -EINVAL;
/* Verify that cmsg_len is at least sizeof(struct cmsghdr) */
/* The first check was omitted in
if (!CMSG_OK(msg, cmsg))
goto error;
if (cmsg->cmsg_level != SOL_SOCKET)
continue;
switch (cmsg->cmsg_type)
{
case SCM_RIGHTS:
err=scm_fp_copy(cmsg, &p->fp);
if (err0)
goto error;
break;
case SCM_CREDENTIALS:
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct ucred)))
goto error;
memcpy(&p->creds, CMSG_DATA(cmsg), sizeof(struct ucred));
err = scm_check_creds(&p->creds);
if (err)
goto error;
break;
default:
goto error;
}
}
if (p->fp && !p->fp->count)
{
kfree(p->fp);
p->fp = NULL;
}
return 0;
error:
scm_destroy(p);
return err;
}
我们看到上面的代码与前面一节的scm_recv是对应的,回到上面的主函数unix_dgram_sendmsg中,我们看到要判断msg->msg_namelen来确定是否提供了目标方的地址,如果有的话就要使用unix_mkname“格式化”地址。如果没有提供地址就说明已经通过connect已经设置了,所以要通过unix_peer_get得到目标地址的sock,并赋值给other指针。接着判断是否要求传送身份信息,但是要求了又没有为指定地址的话就要通过unix_autobind自动生成一个地址。len > sk->sk_sndbuf - 32是因为sk_sndbuf是保存缓存区大小的结构变量,其中要留出32个字节的控制信息。继续往下看
skb = sock_alloc_send_skb(sk, len, msg->msg_flags&MSG_DONTWAIT, &err);
if (skb==NULL)
goto out;
memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
if (siocb->scm->fp)
unix_attach_fds(siocb->scm, skb);
unix_get_secdata(siocb->scm, skb);
skb_reset_transport_header(skb);
err = memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len);
if (err)
goto out_free;
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
首先为发送缓冲区准备一个sk_buff,接着将我们上面准备的身份信息拷贝到这个结构中,然后进入unix_attach_fds中
static void unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb)
{
int i;
for (i=scm->fp->count-1; i>=0; i--)
unix_inflight(scm->fp->fp);
UNIXCB(skb).fp = scm->fp;
skb->destructor = unix_destruct_fds;
scm->fp = NULL;
}
代码中调用了
void unix_inflight(struct file *fp)
{
struct sock *s = unix_get_socket(fp);
if(s) {
struct unix_sock *u = unix_sk(s);
spin_lock(&unix_gc_lock);
if (atomic_inc_return(&u->inflight) == 1) {
BUG_ON(!list_empty(&u->link));
list_add_tail(&u->link, &gc_inflight_list);
} else {
BUG_ON(list_empty(&u->link));
}
unix_tot_inflight++;
spin_unlock(&unix_gc_lock);
}
}
也就是说如果file是代表着sock的话,就要“记帐”了,以前我们看到在接收信息后要“冲帐”。然后函数调用了memcpy_fromiovec
int memcpy_fromiovec(unsigned char *kdata, struct iovec *iov, int len)
{
while (len > 0) {
if (iov->iov_len) {
int copy = min_t(unsigned int, len, iov->iov_len);
if (copy_from_user(kdata, iov->iov_base, copy))
return -EFAULT;
len -= copy;
kdata += copy;
iov->iov_base += copy;
iov->iov_len -= copy;
}
iov++;
}
return 0;
}
这是其实就是将我们的数据拷贝到缓冲区中。数据在iovec结构变量指针处,我们看到是以此为地址拷贝到内核空间的,copy是确定要拷贝的数据大小。从msghdr结构中可以看出用户空间的缓冲区可以是分散的,而iovec负责指向这些数据缓冲区,而我们的sk_buff缓冲区只有一个所以这里的大小是所有用户缓冲区的长度和。而这个长度的变化是由skb_put来完成的
unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
{
unsigned char *tmp = skb_tail_pointer(skb);
SKB_LINEAR_ASSERT(skb);
skb->tail += len;
skb->len += len;
if (unlikely(skb->tail > skb->end))
skb_over_panic(skb, len, __builtin_return_address(0));
return tmp;
}
函数的意思是根据数据的长度调整tail指针和数据长度len结构变量。回到发送函数中,下面是调用了sock_sndtimeo
static inline long sock_sndtimeo(const struct sock *sk, int noblock)
{
return noblock ? 0 : sk->sk_sndtimeo;
}
代码很简单,要是不允许阻塞就要返回0了,否则就要返回设定的时间。回到函数往下看,接着要发送了
restart:
if (!other) {
err = -ECONNRESET;
if (sunaddr == NULL)
goto out_free;
other = unix_find_other(net, sunaddr, namelen, sk->sk_type,
hash, &err);
if (other==NULL)
goto out_free;
}
unix_state_lock(other);
err = -EPERM;
if (!unix_may_send(sk, other))
goto out_unlock;
if (sock_flag(other, SOCK_DEAD)) {
/*
* Check with 1003.1g - what should
* datagram error
*/
unix_state_unlock(other);
sock_put(other);
err = 0;
unix_state_lock(sk);
if (unix_peer(sk) == other) {
unix_peer(sk)=NULL;
unix_state_unlock(sk);
unix_dgram_disconnected(sk, other);
sock_put(other);
err = -ECONNREFUSED;
} else {
unix_state_unlock(sk);
}
other = NULL;
if (err)
goto out_free;
goto restart;
}
代码到这里朋友们如果前面一直跟着学习的话,并不难理解这里,如果我们上面已经找到了通过connect建立的sock,那么这时候other就已经指向了目标的sock,但是如果没有指向的话,就说明我们还没有走connect,而通过指定地址设置的目标的sock,所以这里unix_find_other找到目标的sock,此函数我们以前看过了,找到了目标的sock结构后,就要unix_may_send判断一下是否可以发送,以前我们也说过这个函数了。紧接着一个比较长的if判断语句段,首先我们看到是if (sock_flag(other, SOCK_DEAD)) 判断的目标方的sock是否还能够使用,接着我们继续往下看
err = -EPIPE;
if (other->sk_shutdown & RCV_SHUTDOWN)
goto out_unlock;
if (sk->sk_type != SOCK_SEQPACKET) {
err = security_unix_may_send(sk->sk_socket, other->sk_socket);
if (err)
goto out_unlock;
}
if (unix_peer(other) != sk && unix_recvq_full(other)) {
if (!timeo) {
err = -EAGAIN;
goto out_unlock;
}
timeo = unix_wait_for_peer(other, timeo);
err = sock_intr_errno(timeo);
if (signal_pending(current))
goto out_free;
goto restart;
}
skb_queue_tail(&other->sk_receive_queue, skb);
unix_state_unlock(other);
other->sk_data_ready(other, len);
sock_put(other);
scm_destroy(siocb->scm);
return len;
out_unlock:
unix_state_unlock(other);
out_free:
kfree_skb(skb);
out:
if (other)
sock_put(other);
scm_destroy(siocb->scm);
return err;
}
结合以前章节中介绍的这里重点将缓冲区挂入到目标方的sock的sk_receive_queue队列头中,这是通过
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_queue_tail(list, newsk);
spin_unlock_irqrestore(&list->lock, flags);
}
其余代码很简单了,到这里我们对UDP的socket数据的发送分析完了,因为UDP的数据发送和接收较TCP的简单,所以我们先介绍了,下一节我们对TCP的数据发送和接收分析一下。
本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u2/64681/showart_1342276.html |
|