免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 1401 | 回复: 0
打印 上一主题 下一主题

tree(3) [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2006-07-18 18:55 |只看该作者 |倒序浏览
TREE(3)                  BSD Library Functions Manual                  TREE(3)
NAME
     SPLAY_PROTOTYPE, SPLAY_GENERATE, SPLAY_ENTRY, SPLAY_HEAD,
     SPLAY_INITIALIZER, SPLAY_ROOT, SPLAY_EMPTY, SPLAY_NEXT, SPLAY_MIN,
     SPLAY_MAX, SPLAY_FIND, SPLAY_LEFT, SPLAY_RIGHT, SPLAY_FOREACH,
     SPLAY_INIT, SPLAY_INSERT, SPLAY_REMOVE, RB_PROTOTYPE, RB_GENERATE,
     RB_ENTRY, RB_HEAD, RB_INITIALIZER, RB_ROOT, RB_EMPTY, RB_NEXT, RB_MIN,
     RB_MAX, RB_FIND, RB_LEFT, RB_RIGHT, RB_PARENT, RB_FOREACH, RB_INIT,
     RB_INSERT, RB_REMOVE - implementations of splay and red-black trees
SYNOPSIS
     #include
     SPLAY_PROTOTYPE(NAME, TYPE, FIELD, CMP);
     SPLAY_GENERATE(NAME, TYPE, FIELD, CMP);
     SPLAY_ENTRY(TYPE);
     SPLAY_HEAD(HEADNAME, TYPE);
     struct TYPE *
     SPLAY_INITIALIZER(SPLAY_HEAD *head);
     SPLAY_ROOT(SPLAY_HEAD *head);
     bool
     SPLAY_EMPTY(SPLAY_HEAD *head);
     struct TYPE *
     SPLAY_NEXT(NAME, SPLAY_HEAD *head, struct TYPE *elm);
     struct TYPE *
     SPLAY_MIN(NAME, SPLAY_HEAD *head);
     struct TYPE *
     SPLAY_MAX(NAME, SPLAY_HEAD *head);
     struct TYPE *
     SPLAY_FIND(NAME, SPLAY_HEAD *head, struct TYPE *elm);
     struct TYPE *
     SPLAY_LEFT(struct TYPE *elm, SPLAY_ENTRY NAME);
     struct TYPE *
     SPLAY_RIGHT(struct TYPE *elm, SPLAY_ENTRY NAME);
     SPLAY_FOREACH(VARNAME, NAME, SPLAY_HEAD *head);
     void
     SPLAY_INIT(SPLAY_HEAD *head);
     struct TYPE *
     SPLAY_INSERT(NAME, SPLAY_HEAD *head, struct TYPE *elm);
     struct TYPE *
     SPLAY_REMOVE(NAME, SPLAY_HEAD *head, struct TYPE *elm);
     RB_PROTOTYPE(NAME, TYPE, FIELD, CMP);
     RB_GENERATE(NAME, TYPE, FIELD, CMP);
     RB_ENTRY(TYPE);
     RB_HEAD(HEADNAME, TYPE);
     RB_INITIALIZER(RB_HEAD *head);
     struct TYPE *
     RB_ROOT(RB_HEAD *head);
     bool
     RB_EMPTY(RB_HEAD *head);
     struct TYPE *
     RB_NEXT(NAME, RB_HEAD *head, struct TYPE *elm);
     struct TYPE *
     RB_MIN(NAME, RB_HEAD *head);
     struct TYPE *
     RB_MAX(NAME, RB_HEAD *head);
     struct TYPE *
     RB_FIND(NAME, RB_HEAD *head, struct TYPE *elm);
     struct TYPE *
     RB_LEFT(struct TYPE *elm, RB_ENTRY NAME);
     struct TYPE *
     RB_RIGHT(struct TYPE *elm, RB_ENTRY NAME);
     struct TYPE *
     RB_PARENT(struct TYPE *elm, RB_ENTRY NAME);
     RB_FOREACH(VARNAME, NAME, RB_HEAD *head);
     void
     RB_INIT(RB_HEAD *head);
     struct TYPE *
     RB_INSERT(NAME, RB_HEAD *head, struct TYPE *elm);
     struct TYPE *
     RB_REMOVE(NAME, RB_HEAD *head, struct TYPE *elm);
DESCRIPTION
     These macros define data structures for different types of trees: splay
     trees and red-black trees.
     In the macro definitions, TYPE is the name tag of a user defined struc-
     ture that must contain a field of type SPLAY_ENTRY, or RB_ENTRY, named
     ENTRYNAME.  The argument HEADNAME is the name tag of a user defined
     structure that must be declared using the macros SPLAY_HEAD(), or
     RB_HEAD().  The argument NAME has to be a unique name prefix for every
     tree that is defined.
     The function prototypes are declared with either SPLAY_PROTOTYPE(), or
     RB_PROTOTYPE().  The function bodies are generated with either
     SPLAY_GENERATE(), or RB_GENERATE().  See the examples below for further
     explanation of how these macros are used.
SPLAY TREES
     A splay tree is a self-organizing data structure.  Every operation on the
     tree causes a splay to happen.  The splay moves the requested node to the
     root of the tree and partly rebalances it.
     This has the benefit that request locality causes faster lookups as the
     requested nodes move to the top of the tree.  On the other hand, every
     lookup causes memory writes.
     The Balance Theorem bounds the total access time for m operations and n
     inserts on an initially empty tree as O((m + n)lg n).  The amortized cost
     for a sequence of m accesses to a splay tree is O(lg n).
     A splay tree is headed by a structure defined by the SPLAY_HEAD() macro.
     A structure is declared as follows:
           SPLAY_HEAD(HEADNAME, TYPE) head;
     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be inserted into the tree.
     The SPLAY_ENTRY() macro declares a structure that allows elements to be
     connected in the tree.
     In order to use the functions that manipulate the tree structure, their
     prototypes need to be declared with the SPLAY_PROTOTYPE() macro, where
     NAME is a unique identifier for this particular tree.  The TYPE argument
     is the type of the structure that is being managed by the tree.  The
     FIELD argument is the name of the element defined by SPLAY_ENTRY().
     The function bodies are generated with the SPLAY_GENERATE() macro.  It
     takes the same arguments as the SPLAY_PROTOTYPE() macro, but should be
     used only once.
     Finally, the CMP argument is the name of a function used to compare tree
     nodes with each other.  The function takes two arguments of type struct
     TYPE *.  If the first argument is smaller than the second, the function
     returns a value smaller than zero.  If they are equal, the function
     returns zero.  Otherwise, it should return a value greater than zero.
     The compare function defines the order of the tree elements.
     The SPLAY_INIT() macro initializes the tree referenced by head.
     The splay tree can also be initialized statically by using the
     SPLAY_INITIALIZER() macro like this:
           SPLAY_HEAD(HEADNAME, TYPE) head = SPLAY_INITIALIZER(&head);
     The SPLAY_INSERT() macro inserts the new element elm into the tree.
     The SPLAY_REMOVE() macro removes the element elm from the tree pointed by
     head.
     The SPLAY_FIND() macro can be used to find a particular element in the
     tree.
           struct TYPE find, *res;
           find.key = 30;
           res = SPLAY_FIND(NAME, head, &find);
     The SPLAY_ROOT(), SPLAY_MIN(), SPLAY_MAX(), and SPLAY_NEXT() macros can
     be used to traverse the tree:
           for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
     Or, for simplicity, one can use the SPLAY_FOREACH() macro:
           SPLAY_FOREACH(np, NAME, head)
     The SPLAY_EMPTY() macro should be used to check whether a splay tree is
     empty.
RED-BLACK TREES
     A red-black tree is a binary search tree with the node color as an extra
     attribute.  It fulfills a set of conditions:
           1.   Every search path from the root to a leaf consists of the same
                number of black nodes.
           2.   Each red node (except for the root) has a black parent.
           3.   Each leaf node is black.
     Every operation on a red-black tree is bounded as O(lg n).  The maximum
     height of a red-black tree is 2lg(n + 1).
     A red-black tree is headed by a structure defined by the RB_HEAD() macro.
     A structure is declared as follows:
           RB_HEAD(HEADNAME, TYPE) head;
     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be inserted into the tree.
     The RB_ENTRY() macro declares a structure that allows elements to be con-
     nected in the tree.
     In order to use the functions that manipulate the tree structure, their
     prototypes need to be declared with the RB_PROTOTYPE() macro, where NAME
     is a unique identifier for this particular tree.  The TYPE argument is
     the type of the structure that is being managed by the tree.  The FIELD
     argument is the name of the element defined by RB_ENTRY().
     The function bodies are generated with the RB_GENERATE() macro.  It takes
     the same arguments as the RB_PROTOTYPE() macro, but should be used only
     once.
     Finally, the CMP argument is the name of a function used to compare tree
     noded with each other.  The function takes two arguments of type struct
     TYPE *.  If the first argument is smaller than the second, the function
     returns a value smaller than zero.  If they are equal, the function
     returns zero.  Otherwise, it should return a value greater than zero.
     The compare function defines the order of the tree elements.
     The RB_INIT() macro initializes the tree referenced by head.
     The red-black tree can also be initialized statically by using the
     RB_INITIALIZER() macro like this:
           RB_HEAD(HEADNAME, TYPE) head = RB_INITIALIZER(&head);
     The RB_INSERT() macro inserts the new element elm into the tree.
     The RB_REMOVE() macro removes the element elm from the tree pointed by
     head.
     The RB_FIND() macro can be used to find a particular element in the tree.
           struct TYPE find, *res;
           find.key = 30;
           res = RB_FIND(NAME, head, &find);
     The RB_ROOT(), RB_MIN(), RB_MAX(), and RB_NEXT() macros can be used to
     traverse the tree:
           for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME,
           &head, np))
     Or, for simplicity, one can use the RB_FOREACH() macro:
           RB_FOREACH(np, NAME, head)
     The RB_EMPTY() macro should be used to check whether a red-black tree is
     empty.
NOTES
     Trying to free a tree in the following way is a common error:
           SPLAY_FOREACH(var, NAME, head) {
                   SPLAY_REMOVE(NAME, head, var);
                   free(var);
           }
           free(head);
     Since var is freed, the FOREACH() macro refers to a pointer that may have
     been reallocated already.  Proper code needs a second variable.
           for (var = SPLAY_MIN(NAME, head); var != NULL; var = nxt) {
                   nxt = SPLAY_NEXT(NAME, head, var);
                   SPLAY_REMOVE(NAME, head, var);
                   free(var);
           }
     Both RB_INSERT() and SPLAY_INSERT() return NULL if the element was
     inserted in the tree successfully, otherwise they return a pointer to the
     element with the colliding key.
     Accordingly, RB_REMOVE() and SPLAY_REMOVE() return the pointer to the
     removed element otherwise they return NULL to indicate an error.
AUTHORS
     The author of the tree macros is Niels Provos.
BSD                            February 24, 2002                           BSD

文件:tree.rar大小:4KB下载:
下载


本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u/21842/showart_142296.html
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP