免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 945 | 回复: 0
打印 上一主题 下一主题

GPRS文章 [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2007-06-06 01:38 |只看该作者 |倒序浏览

General Packet Radio Service (GPRS) is a mobile data service available to users of GSM mobile phones. It is often described as "2.5G", that is, a technology between the second (2G) and third (3G) generations of mobile telephony. It provides moderate speed data transfer, by using unused TDMA channels in the GSM network. Originally there was some thought to extend GPRS to cover other standards, but instead those networks are being converted to use the GSM standard, so that is the only kind of network where GPRS is in use. GPRS is integrated into GSM standards releases starting with Release 97 and onwards. First it was standardised by ETSI but now that effort has been handed onto the 3GPP.
GPRS basics
GPRS is different from the older Circuit Switched Data (or CSD) connection included in GSM standards releases before Release 97 (from 1997, the year the standard was feature frozen). In CSD, a data connection establishes a circuit, and reserves the full bandwidth of that circuit during the lifetime of the connection. GPRS is packet-switched which means that multiple users share the same transmission channel, only transmitting when they have data to send. This means that the total available bandwidth can be immediately dedicated to those users who are actually sending at any given moment, providing higher utilisation where users only send or receive data intermittently. Web browsing, receiving e-mails as they arrive and instant messaging are examples of uses that require intermittent data transfers, which benefit from sharing the available bandwidth.
Usually, GPRS data are billed per kilobytes of information transceived while circuit-switched data connections are billed per second. The latter is to reflect the fact that even during times when no data are being transferred, the bandwidth is unavailable to other potential users.
GPRS originally supported (in theory) IP, PPP and X.25 connections. The latter has been typically used for applications like wireless payment terminals although it has been removed as a requirement from the standard. X.25 can still be supported over PPP, or even over IP, but doing this requires either a router to do encapsulation or intelligence built into the end terminal.
GPRS speeds and profile
Packet-switched data under GPRS is achieved by allocating unused cell bandwidth to transmit data. As dedicated voice (or data) channels are setup by phones, the bandwidth available for packet switched data shrinks. A consequence of this is that packet switched data has a poor bit rate in busy cells. The theoretical limit for packet switched data is approx. 160.0 kbit/s (using 8 time slots and CS-4). A realistic bit rate is 30–80 kbit/s, because it is possible to use max 4 time slots for downlink. A change to the radio part of GPRS called EDGE allows higher bit rates of between 160 and 236.8 kbit/s. The maximum data rates are achieved only by allocation of more than one time slot in the TDMA frame. Also, the higher the data rate, the lower the error correction capability. Generally, the connection speed drops logarithmically with distance from the base station. This is not an issue in heavily populated areas with high cell density, but may become an issue in sparsely populated/rural areas.
The GPRS Capability Classes
Class A
Can be connected to GPRS service and GSM service (voice, SMS), using both at the same time. No such devices are known to be available today.
Class B
Can be connected to GPRS service and GSM service (voice, SMS), but using only one or the other at a given time. During GSM service (voice call or SMS), GPRS service is suspended, and then resumed automatically after the GSM service (voice call or SMS) has concluded. Most GPRS mobile devices are Class B.
Class C
Are connected to either GPRS service or GSM service (voice, SMS). Must be switched manually between one or the other service.
GPRS Multislot Classes
GPRS speed is a direct function of the number of TDMA time slots assigned, which is the lesser of (a) what the particular cell supports and (b) the maximum capability of the mobile device expressed as a GPRS Multislot Class.
The most common GPRS Multislot Classes are:
Class 2
Minimal GPRS implementation
Class 4
Modest GPRS implementation, 50% faster download than Class 2
Class 6
Modest implementation, but with better uploading than Class 4
Class 8
Better implementation, 33% faster download than Classes 4 & 6
Class 10
Better implementation, and with better uploading than Class 8, seen in better cell phones and PC Cards
Class 12
Best implementation, with maximum upload performance, typically seen only in high-end PC Cards
GPRS Coding
Transfer speed depends also on the channel encoding used. The least robust (but fastest) encoding scheme (CS-4) is available near the Base Transceiver Station (BTS) while the most robust encoding scheme (CS-1) is used when the Mobile Station (MS) is further away from the BTS.
Using the CS-4 it is possible to achieve a user speed of 20.0 kbit/s per time slot. However, using this scheme the cell coverage is 25% of normal. CS-1 can achieve a user speed of only 8.0 kbit/s per time slot, but has 98% of normal coverage. Newer network equipment can adapt the transfer speed automatically depending on the mobile location.


本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u1/40351/showart_315591.html
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP