免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 3986 | 回复: 0
打印 上一主题 下一主题

rtpbreak-1.3.tgz (强大的rtp抓包以及分析黑客工具) [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2009-08-10 22:31 |只看该作者 |倒序浏览

rtpbreak 1.3
xenion - Michele Dallachiesa
michele dot dallachiesa at poste dot it
Contents

  • Introduction


  • Usage


  • Examples



  • How it works


  • Dependencies and compilation


  • Links

    Introduction With rtpbreak you can detect, reconstruct and analyze any RTP session. It doesn't require the presence of RTCP packets and works independently form the used signaling protocol (SIP, H.323, SCCP, ...). The input is a sequence of packets, the output is a set of files you can use as input for other tools (wireshark/tshark, sox, grep/awk/cut/cat/sed, ...). It supports also wireless (AP_DLT_IEEE802_11) networks. This is a list of scenarios where rtpbreak is a good choice:

    • reconstruct any RTP stream with an unknown or unsupported signaling protocol
    • reconstruct any RTP stream in wireless networks, while doing channel hopping (VoIP activity detector)
    • reconstruct and decode any RTP stream in batch mode (with sox, asterisk, ...)
    • reconstruct any already existing RTP stream
    • reorder the packets of any RTP stream for later analysis (with tshark, wireshark, ...)
    • build a tiny wireless VoIP tapping system in a single chip Linux unit
    • build a complete VoIP tapping system (rtpbreak would be just the RTP dissector module!)
    This project is released under license GPL version 2.
    Usage The unique mandatory input parameter is the packet source (network interface or pcap file). This is the list of accepted parameters:
    INPUT
    -r
    Read packets from file (pcap format)  
    -i
    Read packets from network interface  
    -L
    Force the datalink header length to  bytes. This is useful if the interface type is not correctly recognized by libpcap
    OUTPUT
    -d
    Set the output directory to  
    -w
    Disable the raw dump of RTP sessions
    -W
    Disable the pcap dump of RTP sessions
    -g
    Fill the gaps of lost packets in raw dumps with the last sniffed packet, preventing desynchronization problems when decoding/mixing multiple RTP streams (with sox, ...)
    -n
    Dump packets passing the single packet pattern but not the multiple packets pattern (the noise packets) to pcap file
    -f
    Disable stdout logging
    -F
    Enable syslog logging
    -v
    Be verbose
    SELECT
    -m
    Sniff packets in promiscuous mode
    -p
    Consider only packets matching the libpcap filter  
    -e
    Expect an even destination UDP port. The RTP packets must have an even destination UDP port. This should be always true, anyway some VoIP networks (like Yahoo) don't respect this rule
    -u
    Expect unprivileged source/destination UDP ports (> 1024). This should always be true
    -y
    The RTP packets must have exactly this payload type. For example, if we want only RTP streams with data encoded in G.711 ulaw, we should add the option -y 0, value obtained from the -k option
    -l
    The RTP payload length must be exactly  bytes
    -t
    Consider terminated any session without new packets for  seconds
    -T
    Consider a timeout of  seconds in the pattern over multiple packets
    -P
    Consider  packets in the pattern over multiple packets
    EXECUTION
    -Z
    Run as user  
    -D
    Run in background (option -f implicit)
    MISC
    -k
    Dump a list of known RTP payload types. Note that, because of the useless functionality called "Dynamic RTP Payload", those values shouldn't be considered too much. The rtp_payload_type and codec association is in fact concorded through the Signaling messages (SIP, H.323, SCCP, ...), assigning new values also for those codecs already having a standard and predefined value
    -h
    Display a summary of the valid options and exit
    The files in the output directory have the following naming scheme: The set of files with pattern rtp.x.* refer to the rtpbreak execution number x, the subset of files with pattern rtp.x.y.* refer to the RTP session number y (of the rtpbreak execution number x). At each execution and at each RTP session detection, x and y are respectively incremented. The set of output files of the rtpbreak execution number x is organized as follows:
    rtp.x.txt
    The rtpbreak execution log, always generated
    rtp.x.noise.pcap
    The noise packets, generated with option -n enabled
    rtp.x.y.*
    For each detected RTP stream y:
    rtp.x.y.raw
    The transported raw data of the RTP session y. Generated by default, can be disabled with option -w enabled
    rtp.x.y.pcap
    The reordered packets of the RTP session y. Generated by default, can be disabled with option -W enabled
    rtp.x.y.txt
    The y RTP session log, always generated
    Examples In this section there are some commented examples.
    Record, mix and replay a VoIP call Scope: We want to detect, reconstruct and decode a conversation between two VoIP Wireless phones, the final output should be a wav file. First of all, we sniff the packets with rtpbreak (fill gaps, sniff packets in promisc mode, gather packets from network interface wifi0, use './logz/' as output directory): xenion@gollum:~/dev/rtpbreak-1.3$ sudo src/rtpbreak -i wifi0 -g -m -d logz
    + rtpbreak v1.3 running here!
    + pid: 3580, date/time: 19/02/2008#09:49:21
    + Configuration
       + INPUT
         Packet source: iface 'wifi0'
         Force datalink header length: disabled
       + OUTPUT
         Output directory: 'logz'
         RTP raw dumps: enabled
         RTP pcap dumps: enabled
         Fill gaps: enabled
         Dump noise: disabled
         Logfile: 'logz/rtp.0.txt'
         Logging to stdout: enabled
         Logging to syslog: disabled
         Be verbose: disabled
       + SELECT
         Sniff packets in promisc mode: enabled
         Add pcap filter: disabled
         Expecting even destination UDP port: disabled
         Expecting unprivileged source/destination UDP ports: disabled
         Expecting RTP payload type: any
         Expecting RTP payload length: any
         Packet timeout: 10.00 seconds
         Pattern timeout: 0.25 seconds
         Pattern packets: 5
       + EXECUTION
         Running as user/group: root/root
         Running daemonized: disabled
    * You can dump stats sending me a SIGUSR2 signal
    * Reading packets...
    ! [rtp0] detected: pt=0(g711U) 192.168.0.30:2072 => 192.168.0.20:2074
    ! [rtp1] detected: pt=0(g711U) 192.168.0.20:2074 => 192.168.0.30:2072
    * [rtp1] probable reverse RTP stream: [rtp0]
    + Status
       Alive RTP Sessions: 2
       Closed RTP Sessions: 0
       Detected RTP Sessions: 2
       Flushed RTP packets: 3358
       Lost RTP packets: 122 (3.51%)
       Noise (false positive) packets: 0
    + [rtp1] stats: packets inbuffer=262 flushed=1673 lost=61(3.52%), call_length=1m2s
    + [rtp0] stats: packets inbuffer=270 flushed=1685 lost=61(3.49%), call_length=1m2s
    * [rtp1] closed: packets inbuffer=0 flushed=2800 lost=115(3.95%), call_length=1m28s
    * [rtp0] closed: packets inbuffer=0 flushed=2819 lost=106(3.62%), call_length=1m28s
    --
    Caught SIGINT signal (2), cleaning up...
    --
    + Status
       Alive RTP Sessions: 0
       Closed RTP Sessions: 2
       Detected RTP Sessions: 2
       Flushed RTP packets: 5619
       Lost RTP packets: 221 (3.78%)
       Noise (false positive) packets: 0
    + No active RTP streams
    xenion@gollum:~/dev/rtpbreak-1.3$
    We've sent a SIGUSR2 signal to the rtpbreak process at call_length=1m2s, forcing a stats print. The final output directory content is the following:
    xenion@gollum:~/dev/rtpbreak-1.3$ ls -1 logz
    rtp.0.0.pcap
    rtp.0.0.raw
    rtp.0.0.txt
    rtp.0.1.pcap
    rtp.0.1.raw
    rtp.0.1.txt
    rtp.0.txt
    xenion@gollum:~/dev/rtpbreak-1.3$
    Those are the two RTP sessions logs:
    xenion@gollum:~/dev/rtpbreak-1.3$ cat logz/rtp.0.0.txt
    RTP stream id: rtp.0.0
    Packet source: iface  'wifi0'
    First seen packet: 19/02/2008#09:49:29 (pcap time)
    Stream peers: 192.168.0.30:2072 => 192.168.0.20:2074
    RTP ssrc: 1695569992
    RTP payload type: 0 (ITU-T G.711 PCMU)
    Last seen packet: 19/02/2008#09:50:57 (pcap time)
    Call length: 1m28s
    Flushed packets: 2819
    Lost packets: 106 (3.62%)
    RTP payload length: 240 bytes (fixed)
    xenion@gollum:~/dev/rtpbreak-1.3$ cat logz/rtp.0.1.txt
    RTP stream id: rtp.0.1
    Packet source: iface  'wifi0'
    First seen packet: 19/02/2008#09:49:29 (pcap time)
    Stream peers: 192.168.0.20:2074 => 192.168.0.30:2072
    RTP ssrc: 112268413
    RTP payload type: 0 (ITU-T G.711 PCMU)
    Probable reverse RTP stream id: rtp.0.0
    Last seen packet: 19/02/2008#09:50:57 (pcap time)
    Call length: 1m28s
    Flushed packets: 2800
    Lost packets: 115 (3.95%)
    RTP payload length: 240 bytes (fixed)
    xenion@gollum:~/dev/rtpbreak-1.3$
    Now, we've to decode, mix and replay this recorded call:
    xenion@gollum:~/dev/rtpbreak-1.3$ sox -r8000 -c1 -t ul logz/rtp.0.0.raw -t wav logz/0.wav
    xenion@gollum:~/dev/rtpbreak-1.3$ sox -r8000 -c1 -t ul logz/rtp.0.1.raw -t wav logz/1.wav
    xenion@gollum:~/dev/rtpbreak-1.3$ sox -m logz/0.wav logz/1.wav logz/call.wav
    xenion@gollum:~/dev/rtpbreak-1.3$ mplayer logz/call.wav
    Analyze an RTP session Scope: We want to analyze a pcap file with some RTP streams, using the most aggressive configuration of the detection heuristics. First of all, we reconstruct the RTP streams with rtpbreak: xenion@gollum:~/dev/rtpbreak-1.3$ rtpbreak -P2 -t100 -T100 -d logz -r h323.pcap  
    + rtpbreak v1.3 running here!
    + pid: 4613, date/time: 19/02/2008#10:18:54
    + Configuration
       + INPUT
         Packet source: rxfile 'h323.pcap'
         Force datalink header length: disabled
       + OUTPUT
         Output directory: 'logz'
         RTP raw dumps: enabled
         RTP pcap dumps: enabled
         Fill gaps: disabled
         Dump noise: disabled
         Logfile: 'logz/rtp.1.txt'
         Logging to stdout: enabled
         Logging to syslog: disabled
         Be verbose: disabled
       + SELECT
         Sniff packets in promisc mode: disabled
         Add pcap filter: disabled
         Expecting even destination UDP port: disabled
         Expecting unprivileged source/destination UDP ports: disabled
         Expecting RTP payload type: any
         Expecting RTP payload length: any
         Packet timeout: 100.00 seconds
         Pattern timeout: 100.00 seconds
         Pattern packets: 2
       + EXECUTION
         Running as user/group: xenion/xenion
         Running daemonized: disabled
    * You can dump stats sending me a SIGUSR2 signal
    * Reading packets...
    ! [rtp0] detected: pt=102(?) 172.16.1.109:5004 => 172.16.1.105:5012
    ! [rtp1] detected: pt=0(g711U) 172.16.1.105:5012 => 172.16.1.109:5004
    * [rtp1] probable reverse RTP stream: [rtp0]
    ! [rtp2] detected: pt=31(h261) 172.16.1.109:5006 => 172.16.1.105:5014
    * eof reached.
    --
    Caught SIGTERM signal (15), cleaning up...
    --
    * [rtp2] closed: packets inbuffer=0 flushed=2286 lost=0(0.00%), call_length=4m10s
    * [rtp1] closed: packets inbuffer=0 flushed=4465 lost=0(0.00%), call_length=4m8s
    * [rtp0] closed: packets inbuffer=0 flushed=6254 lost=0(0.00%), call_length=4m10s
    + Status
       Alive RTP Sessions: 0
       Closed RTP Sessions: 3
       Detected RTP Sessions: 3
       Flushed RTP packets: 13005
       Lost RTP packets: 0 (0.00%)
       Noise (false positive) packets: 70
    + No active RTP streams
    xenion@gollum:~/dev/rtpbreak-1.3$
    The output directory content, after running examples 1 and 2, should be the following:
    xenion@gollum:~/dev/rtpbreak-1.3$ ls -1 logz
    0.wav
    1.wav
    call.wav
    rtp.0.0.pcap
    rtp.0.0.raw
    rtp.0.0.txt
    rtp.0.1.pcap
    rtp.0.1.raw
    rtp.0.1.txt
    rtp.0.txt
    rtp.1.0.pcap
    rtp.1.0.raw
    rtp.1.0.txt
    rtp.1.1.pcap
    rtp.1.1.raw
    rtp.1.1.txt
    rtp.1.2.pcap
    rtp.1.2.raw
    rtp.1.2.txt
    rtp.1.txt
    xenion@gollum:~/dev/rtpbreak-1.3$
    The set of files of the second rtpbreak execution have prefix rtp.1. Those are the three RTP sessions logs: xenion@gollum:~/dev/rtpbreak-1.3$ cat logz/rtp.1.0.txt
    RTP stream id: rtp.1.0
    Packet source: rxfile 'h323.pcap'
    First seen packet: 14/11/2006#17:57:29 (pcap time)
    Stream peers: 172.16.1.109:5004 => 172.16.1.105:5012
    RTP ssrc: 268399165
    RTP payload type: 102 (Unknown)
    Last seen packet: 14/11/2006#18:01:39 (pcap time)
    Call length: 4m10s
    Flushed packets: 6254
    Lost packets: 0 (0.00%)
    RTP payload length: 65 bytes (fixed)
    xenion@gollum:~/dev/rtpbreak-1.3$ cat logz/rtp.1.1.txt
    RTP stream id: rtp.1.1
    Packet source: rxfile 'h323.pcap'
    First seen packet: 14/11/2006#17:57:29 (pcap time)
    Stream peers: 172.16.1.105:5012 => 172.16.1.109:5004
    RTP ssrc: 1910395951
    RTP payload type: 0 (ITU-T G.711 PCMU)
    Probable reverse RTP stream id: rtp.1.0
    Last seen packet: 14/11/2006#18:01:37 (pcap time)
    Call length: 4m8s
    Flushed packets: 4465
    Lost packets: 0 (0.00%)
    RTP payload length: 240 bytes (fixed)
    xenion@gollum:~/dev/rtpbreak-1.3$ cat logz/rtp.1.2.txt
    RTP stream id: rtp.1.2
    Packet source: rxfile 'h323.pcap'
    First seen packet: 14/11/2006#17:57:29 (pcap time)
    Stream peers: 172.16.1.109:5006 => 172.16.1.105:5014
    RTP ssrc: 267301810
    RTP payload type: 31 (ITU-T H.261)
    Last seen packet: 14/11/2006#18:01:39 (pcap time)
    Call length: 4m10s
    Flushed packets: 2286
    Lost packets: 0 (0.00%)
    RTP payload length: 945 bytes (variable, this is the last seen)
    xenion@gollum:~/dev/rtpbreak-1.3$
    Now, we completely dissect the first packet of the third RTP session with tshark:
    xenion@gollum:~/dev/rtpbreak-1.3$ cat logz/rtp.1.2.txt | grep "Stream peers"
    Stream peers: 172.16.1.109:5006 => 172.16.1.105:5014
    xenion@gollum:~/dev/rtpbreak-1.3$ tshark -r logz/rtp.1.2.pcap -d udp.port==5006,rtp -c 1 -V
    Frame 1 (1073 bytes on wire, 1073 bytes captured)
        Arrival Time: Nov 14, 2006 17:57:29.972300000
        [Time delta from previous captured frame: 0.000000000 seconds]
        [Time delta from previous displayed frame: 0.000000000 seconds]
        [Time since reference or first frame: 0.000000000 seconds]
        Frame Number: 1
        Frame Length: 1073 bytes
        Capture Length: 1073 bytes
        [Frame is marked: False]
        [Protocols in frame: eth:ip:udp:rtp:h261]
    Ethernet II, Src: Dell_15:09:a6 (00:12:3f:15:09:a6), Dst: Dell_ca:ec:cd (00:14:22:ca:ec:cd)
        Destination: Dell_ca:ec:cd (00:14:22:ca:ec:cd)
            Address: Dell_ca:ec:cd (00:14:22:ca:ec:cd)
            .... ...0 .... .... .... .... = IG bit: Individual address (unicast)
            .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default)
        Source: Dell_15:09:a6 (00:12:3f:15:09:a6)
            Address: Dell_15:09:a6 (00:12:3f:15:09:a6)
            .... ...0 .... .... .... .... = IG bit: Individual address (unicast)
            .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default)
        Type: IP (0x0800)
    Internet Protocol, Src: 172.16.1.109 (172.16.1.109), Dst: 172.16.1.105 (172.16.1.105)
        Version: 4
        Header length: 20 bytes
        Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN: 0x00)
            0001 00.. = Differentiated Services Codepoint: Unknown (0x04)
            .... ..0. = ECN-Capable Transport (ECT): 0
            .... ...0 = ECN-CE: 0
        Total Length: 1059
        Identification: 0x0000 (0)
        Flags: 0x04 (Don't Fragment)
            0... = Reserved bit: Not set
            .1.. = Don't fragment: Set
            ..0. = More fragments: Not set
        Fragment offset: 0
        Time to live: 64
        Protocol: UDP (0x11)
        Header checksum: 0xdbc3 [correct]
            [Good: True]
            [Bad : False]
        Source: 172.16.1.109 (172.16.1.109)
        Destination: 172.16.1.105 (172.16.1.105)
    User Datagram Protocol, Src Port: wsm-server (5006), Dst Port: 5014 (5014)
        Source port: wsm-server (5006)
        Destination port: 5014 (5014)
        Length: 1039
        Checksum: 0x5f17 [incorrect, should be 0x270c (maybe caused by "UDP checksum offload"?)]
            [Good Checksum: False]
            [Bad Checksum: True]
    Real-Time Transport Protocol
        10.. .... = Version: RFC 1889 Version (2)
        ..0. .... = Padding: False
        ...0 .... = Extension: False
        .... 0000 = Contributing source identifiers count: 0
        0... .... = Marker: False
        Payload type: ITU-T H.261 (31)
        Sequence number: 42926
        Timestamp: 3003
        Synchronization Source identifier: 0x0feeb3b2 (267301810)
    ITU-T Recommendation H.261
        Start bit position: 0
        End bit position: 2
        Intra frame encoded data flag: False
        Motion vector flag: True
        GOB Number: 0
        Macroblock address predictor: 0
        Quantizer: 0
        Horizontal motion vector data: 0
        Vertical motion vector data: 0
        H.261 stream: 00010006000113220300C0300DFF7FD1019B8103881035C0...
    xenion@gollum:~/dev/rtpbreak-1.3$
    The wrong UDP checksum comes from the original network packet, rtpbreak only reorders the network packets of each RTP stream. As we did, rtpbreak can be used together with tshark/wireshark to handle complex needs.
    Particular scenarios
    Scope: We want to (successfully) handle some particular scenarios. This is a list of problem description, (probable) cause and (hopefully) solution.

  • Problem
    An improbable high number of RTP sessions and noise packets is detected.
    Cause
    There is some type of silence suppression.
    Solution
    Dilate the timeouts: rtpbreak -i eth0 -n -t100 -T100

  • Problem
    An expected RTP session is not recognized and some noise packets are detected.
    Cause
    The conversation has been immediately terminated.
    Solution
    Reduce the number of required packets for the multiple packets pattern: rtpbreak -i eth0 -n -P2

  • Problem
    The expected RTP sessions are not recognized.
    Cause
    The protocol is not RTP, the network interface is not in promisc mode, the conversation is very disturbed, the conversation was immediately terminated.
    Solution
    Dilate the timeouts and reduce the number of required packets for the multiple packets pattern: rtpbreak -i eth0 -m -n -P2 -t100 -T100
    This is the most aggressive (and computationally expensive) configuration of the detection heuristics and will always detect any RTP session.
    How it works
    The RTP sessions are composed by an ordered sequence of RTP packets. Those packets transport the Real Time data using the UDP transport protocol. The RTP packets must respect some well defined rules in order to be considered valid, this characteristic allows us to define a pattern on the single packet that is used to discriminate the captured network traffic from packets that can be RTP and those that securely are not. The fixed RTP header has this format:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |V=2|P|X|  CC   |M|     PT      |       sequence number         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           timestamp                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           synchronization source (SSRC) identifier            |
    +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
    |            contributing source (CSRC) identifiers             |
    |                             ....                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    The following checks are performed (on each sniffed packet):
  • Destination UDP port: The destination UDP port must be even, as specified in [rfc1889]. Beyond this, it must be greater than 1024. This because in the UDP and TCP transport protocols the ports  0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      defined by profile       |           length              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        header extension                       |
    |                             ....                              |
    The length field indicates the extension size, header of the extension excluded. His presence is indicated by the X field value. If active, the RTP payload size is adjusted, checking it to be greater than 0.
    The UDP packets passing those checks are considered like "maybe RTP" packets. Note that the IP and UDP packet checksums aren't checked because quite often they're erroneously computed by VoIP clients. The UDP packets passing those checks are compared with the already detected RTP sessions (this is called pattern over multiple packets). The comparison is done considering the following informations:
  • SSRC: The value of the SSRC field in the fixed RTP header indicates the unique identifier of the Sender of the session. His value is constant in all RTP packets of the same session.
  • IP addresses and UDP ports: The IP addresses and the UDP ports of the Sender and Receiver are constant in all RTP packets of the same session.
  • Sequence number: The seq field in the fixed RTP header indicates the packet sequence number, a value that isn't necessarily initialized to 1 but that it's strictly increasing in RTP packets of the same session. It's considered a window of acceptable values for each session, that changes dynamically. This allows to consider the eventuality that some RTP packets may have been lost.
  • Timestamp: The ts field in the fixed RTP header indicates the sampling timestamp of the first byte of the RTP payload, a value strictly increasing in RTP packets of the same session. Also in this case it's considered a window of acceptable values for each session, that changes dynamically. This allows to consider the eventuality that some RTP packets may have been lost.
    If it's identified a possible session, the UDP packet is inserted in his buffer. If this doesn't happen, a new one is created. When to a session are assigned a minimal set of UDP packets, it's considered valid and any UDP packet in his buffer is considered definitely RTP. This must happen before a timeout, after that the session is considered a false positive (noise packets) and destroyed.
    Dependencies and compilation This is a Unix-oriented application written in C. The compilation requires a C compiler like gcc and the following libs: libpcap (≥0.7), libnet (≥1.1). In debian, you need the following packages (or higher versions):

    • libnet1
    • libnet1-dev
    • libpcap0.7
    • libpcap0.7-dev

    To compile, type "make" in the top directory.
    In order to decode the RTP streams with sox, you need sox with the support for the required formats. In debian, you need the following packages:

    • sox
    • libsox-fmt-all

    Links


    本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u1/45976/showart_2023868.html
  • 您需要登录后才可以回帖 登录 | 注册

    本版积分规则 发表回复

      

    北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
    未成年举报专区
    中国互联网协会会员  联系我们:huangweiwei@itpub.net
    感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

    清除 Cookies - ChinaUnix - Archiver - WAP - TOP