免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 3165 | 回复: 0

数据挖掘小议!!! [复制链接]

论坛徽章:
0
发表于 2011-01-04 16:26 |显示全部楼层
数据挖掘,在人工智能领域,习惯上又称为数据库中知识发现(Knowledge Discovery in Database, KDD), 也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程以下三个阶段组成:(1)数据准备,(2)数据挖掘,(3)结果表达和解释。数据挖掘可以与用户或知识库交互。

  并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。

  需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。

  数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2) 人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。


数据挖掘能做什么

  1)数据挖掘能做以下七种不同事情(分析方法):

  ? 分类 (Classification)

  ? 估值(Estimation)

  ? 预言(Prediction)

  ? 相关性分组或关联规则(Affinity grouping or association rules)

  ? 聚集(Clustering)

  ? 描述和可视化(Description and Visualization)

  ? 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

  2)数据挖掘分类

  以上七种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘

  ? 直接数据挖掘

  目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。

  ? 间接数据挖掘

  目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。

  ? 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘

  3)各种分析方法的简介

  ? 分类 (Classification)

  首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。

  例子:

  a. 信用卡申请者,分类为低、中、高风险

  b. 故障诊断:中国宝钢集团与上海天律信息技术有限公司合作,采用数据挖掘技术对钢材生产的全流程进行质量监控和分析,构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。

  注意: 类的个数是确定的,预先定义好的

  ? 估值(Estimation)

  估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。

  例子:

  a. 根据购买模式,估计一个家庭的孩子个数

  b. 根据购买模式,估计一个家庭的收入

  c. 估计real estate的价值

  一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。

  ? 预言(Prediction)

  通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。

  例子: 海南航空引入领先的数据挖掘工具马克威分析系统,分析客流、燃油等变化趋势,以航线收益为主题进行数据挖掘,制定精细的销售策略,有效提高了企业收益。

  ? 相关性分组或关联规则(Affinity grouping or association rules)

  决定哪些事情将一起发生。

  ? 描述和可视化(Des cription and Visualization)

  是对数据挖掘结果的表示方式。

数据挖掘技术实现

  在技术上可以根据它的工作过程分为:数据的抽取、数据的存储和管理、数据的展现等关键技术。

  ?数据的抽取

  数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入数据仓库。数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等几个方面的处理。在数据抽取方面,未来的技术发展将集中在系统功能集成化方面,以适应数据仓库本身或数据源的变化,使系统更便于管理和维护。

  ?数据的存储和管理

  数据仓库的组织管理方式决定了它有别于传统数据库的特性,也决定了其对外部数据的表现形式。数据仓库管理所涉及的数据量比传统事务处理大得多,且随时间的推移而快速累积。在数据仓库的数据存储和管理中需要解决的是如何管理大量的数据、如何并行处理大量的数据、如何优化查询等。目前,许多数据库厂家提供的技术解决方案是扩展关系型数据库的功能,将普通关系数据库改造成适合担当数据仓库的服务器。

  ?数据的展现

  在数据展现方面主要的方式有:

  查询:实现预定义查询、动态查询、OLAP查询与决策支持智能查询;报表:产生关系数据表格、复杂表格、OLAP表格、报告以及各种综合报表;可视化:用易于理解的点线图、直方图、饼图、网状图、交互式可视化、动态模拟、计算机动画技术表现复杂数据及其相互关系;统计:进行平均值、最大值、最小值、期望、方差、汇总、排序等各种统计分析;挖掘:利用数据挖掘等方法,从数据中得到关于数据关系和模式的识。
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP