免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
12下一页
最近访问板块 发新帖
查看: 4042 | 回复: 13
打印 上一主题 下一主题

【转】《Linux设备驱劝程序第三版》网卡驱动的注释笔记 [复制链接]

论坛徽章:
3
金牛座
日期:2014-06-14 22:04:062015年辞旧岁徽章
日期:2015-03-03 16:54:152015年迎新春徽章
日期:2015-03-04 09:49:45
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2008-08-18 10:28 |只看该作者 |倒序浏览
《Linux设备驱劝程序第三版》网卡驱动的注释笔记
《Linux设备驱劝程序第三版》网卡驱动的范例,讲述了网卡驱动编写的一般方法,脱离了实际硬件的束缚,是一个入门的好例子,在读懂了这个例子,再补充:
1、PCI驱动方面的知识;
2、硬件读写控制方面的知识;
就可以去阅读实际的网卡驱动范例了。幸运的是,《Linux设备驱劝程序》这些方面的知识讲解还是非常到位的。以下是九贱读完这个范例代码的笔记,以做阅读本章内容的补充:


CODE:
/*
* snull.c -- the Simple Network Utility
*
* Copyright (C) 2001 Alessandro Rubini and Jonathan Corbet
* Copyright (C) 2001 O'Reilly & Associates
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files. The citation
* should list that the code comes from the book "Linux Device
* Drivers" by Alessandro Rubini and Jonathan Corbet, published
* by O'Reilly & Associates. No warranty is attached;
* we cannot take responsibility for errors or fitness for use.
*
* $Id: snull.c,v 1.21 2004/11/05 02:36:03 rubini Exp $
*/

#include <linux/config.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>

#include <linux/sched.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/interrupt.h> /* mark_bh */

#include <linux/in.h>
#include <linux/netdevice.h> /* struct device, and other headers */
#include <linux/etherdevice.h> /* eth_type_trans */
#include <linux/ip.h> /* struct iphdr */
#include <linux/tcp.h> /* struct tcphdr */
#include <linux/skbuff.h>

#include "snull.h"

#include <linux/in6.h>
#include <asm/checksum.h>

MODULE_AUTHOR("Alessandro Rubini, Jonathan Corbet");
MODULE_LICENSE("Dual BSD/GPL");


/*
* Transmitter lockup simulation, normally disabled.
*/
static int lockup = 0;
module_param(lockup, int, 0);

static int timeout = SNULL_TIMEOUT;
module_param(timeout, int, 0);

/*
* Do we run in NAPI mode?
*/
static int use_napi = 0;
module_param(use_napi, int, 0);


/*
* A structure representing an in-flight packet.
*/
struct snull_packet {
struct snull_packet *next;
struct net_device *dev;
int datalen;
u8 data[ETH_DATA_LEN];
};

int pool_size = 8;
module_param(pool_size, int, 0);

/*
* This structure is private to each device. It is used to pass
* packets in and out, so there is place for a packet
*/

struct snull_priv {
struct net_device_stats stats;
int status;
struct snull_packet *ppool;
struct snull_packet *rx_queue; /* List of incoming packets */
int rx_int_enabled;
int tx_packetlen;
u8 *tx_packetdata;
struct sk_buff *skb;
spinlock_t lock;
};

static void snull_tx_timeout(struct net_device *dev);
static void (*snull_interrupt)(int, void *, struct pt_regs *);

/*
* 设置设备的包缓冲池.
* 当需要使用NAPI,而非中断处理的时候,设备需要能够保存多个数据包的能力,这个保存所需的缓存,
* 或者在板卡上,或者在内核的DMA环中。
* 作者这里的演示程序,根据pool_size的大小,分配pool_size个大小为struct snull_packet的缓冲区,
* 这个缓冲池用链表组织,“私有数据”结构的ppool成员指针指向链表首部。
*/
void snull_setup_pool(struct net_device *dev)
{
struct snull_priv *priv = netdev_priv(dev);
int i;
struct snull_packet *pkt;

priv->ppool = NULL;
for (i = 0; i < pool_size; i++) {
pkt = kmalloc (sizeof (struct snull_packet), GFP_KERNEL);
if (pkt == NULL) {
printk (KERN_NOTICE "Ran out of memory allocating packet pool\n");
return;
}
pkt->dev = dev;
pkt->next = priv->ppool;
priv->ppool = pkt;
}
}

/*因为snull_setup_pool分配了pool_size个struct snull_packet,所以,驱动退出时,需要释放内存*/
void snull_teardown_pool(struct net_device *dev)
{
struct snull_priv *priv = netdev_priv(dev);
struct snull_packet *pkt;

while ((pkt = priv->ppool)) {
priv->ppool = pkt->next;
kfree (pkt);
/* FIXME - in-flight packets ? */
}
}

/*
* 获取设备要传输的第一个包,传输队列首部相应的移动到下一个数据包.
*/
struct snull_packet *snull_get_tx_buffer(struct net_device *dev)
{
struct snull_priv *priv = netdev_priv(dev);
unsigned long flags;
struct snull_packet *pkt;

spin_lock_irqsave(&priv->lock, flags);
pkt = priv->ppool;
priv->ppool = pkt->next;
if (priv->ppool == NULL) {
printk (KERN_INFO "Pool empty\n");
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&priv->lock, flags);
return pkt;
}

/*将包缓存交还给缓存池*/
void snull_release_buffer(struct snull_packet *pkt)
{
unsigned long flags;
struct snull_priv *priv = netdev_priv(pkt->dev);

spin_lock_irqsave(&priv->lock, flags);
pkt->next = priv->ppool;
priv->ppool = pkt;
spin_unlock_irqrestore(&priv->lock, flags);
if (netif_queue_stopped(pkt->dev) && pkt->next == NULL)
netif_wake_queue(pkt->dev);
}

/*将要传输的包加入到设备dev的传输队列首部,当然,这只是一个演示,这样一来,就变成先进先出了*/
void snull_enqueue_buf(struct net_device *dev, struct snull_packet *pkt)
{
unsigned long flags;
struct snull_priv *priv = netdev_priv(dev);

spin_lock_irqsave(&priv->lock, flags);
pkt->next = priv->rx_queue; /* FIXME - misorders packets */
priv->rx_queue = pkt;
spin_unlock_irqrestore(&priv->lock, flags);
}

/*取得传输队列中的第一个数据包*/
struct snull_packet *snull_dequeue_buf(struct net_device *dev)
{
struct snull_priv *priv = netdev_priv(dev);
struct snull_packet *pkt;
unsigned long flags;

spin_lock_irqsave(&priv->lock, flags);
pkt = priv->rx_queue;
if (pkt != NULL)
priv->rx_queue = pkt->next;
spin_unlock_irqrestore(&priv->lock, flags);
return pkt;
}

/*
* 打开/关闭接收中断.
*/
static void snull_rx_ints(struct net_device *dev, int enable)
{
struct snull_priv *priv = netdev_priv(dev);
priv->rx_int_enabled = enable;
}


/*
* 设备打开函数,是驱动最重要的函数之一,它应该注册所有的系统资源(I/O端口,IRQ、DMA等等),
* 并对设备执行其他所需的设置。
* 因为这个例子中,并没有真正的物理设备,所以,它最重要的工作就是启动传输队列。
*/

int snull_open(struct net_device *dev)
{
/* request_region(), request_irq(), .... (like fops->open) */

/*
* Assign the hardware address of the board: use "\0SNULx", where
* x is 0 or 1. The first byte is '\0' to avoid being a multicast
* address (the first byte of multicast addrs is odd).
*/
memcpy(dev->dev_addr, "\0SNUL0", ETH_ALEN);
if (dev == snull_devs[1])
dev->dev_addr[ETH_ALEN-1]++; /* \0SNUL1 */
netif_start_queue(dev);
return 0;
}

/*设备停止函数,这里的工作就是停止传输队列*/
int snull_release(struct net_device *dev)
{
/* release ports, irq and such -- like fops->close */

netif_stop_queue(dev); /* can't transmit any more */
return 0;
}

/*
* 当用户调用ioctl时类型为SIOCSIFMAP时,如使用ifconfig,系统会调用驱动程序的set_config 方法。
* 用户会传递一个ifmap结构包含需要设置的I/O地址、中断等参数。
*/
int snull_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP) /* 不能设置一个正在运行状态的设备 */
return -EBUSY;

/* 这个例子中,不允许改变 I/O 地址*/
if (map->base_addr != dev->base_addr) {
printk(KERN_WARNING "snull: Can't change I/O address\n");
return -EOPNOTSUPP;
}

/* 允许改变 IRQ */
if (map->irq != dev->irq) {
dev->irq = map->irq;
/* request_irq() is delayed to open-time */
}

/* ignore other fields */
return 0;
}

/*
* 接收数据包函数
* 它被“接收中断”调用,重组数据包,并调用函数netif_rx进一步处理。
* 我们从“硬件”中收到的包,是用struct snull_packet来描述的,但是内核中描述一个包,是使用
* struct sk_buff(简称skb),所以,这里要完成一个把硬件接收的包拷贝至内核缓存skb的一个
* 组包过程(PS:不知在接收之前直接分配一个skb,省去这一步,会如何提高性能,没有研究过,见笑了^o^)。
*/
void snull_rx(struct net_device *dev, struct snull_packet *pkt)
{
struct sk_buff *skb;
struct snull_priv *priv = netdev_priv(dev);

/*
* 分配skb缓存
*/
skb = dev_alloc_skb(pkt->datalen + 2);
if (!skb) { /*分配失败*/
if (printk_ratelimit())
printk(KERN_NOTICE "snull rx: low on mem - packet dropped\n");
priv->stats.rx_dropped++;
goto out;
}
/*
* skb_reserver用来增加skb的date和tail,因为以太网头部为14字节长,再补上两个字节就刚好16字节边界
* 对齐,所以大多数以太网设备都会在数据包之前保留2个字节。
*/
skb_reserve(skb, 2); /* align IP on 16B boundary */
memcpy(skb_put(skb, pkt->datalen), pkt->data, pkt->datalen);

skb->dev = dev; /*skb与接收设备就关联起来了,它在网络栈中会被广泛使用,没道理不知道数据是谁接收来的吧*/
skb->protocol = eth_type_trans(skb, dev); /*获取上层协议类型,这样,上层处理函数才知道如何进一步处理*/
skb->ip_summed = CHECKSUM_UNNECESSARY; /* 设置较验标志:不进行任何校验,作者的驱动的收发都在内存中进行,是没有必要进行校验*/

/*累加计数器*/
priv->stats.rx_packets++;
priv->stats.rx_bytes += pkt->datalen;

/*
* 把数据包交给上层。netif_rx会逐步调用netif_rx_schedule -->__netif_rx_schedule,
* __netif_rx_schedule函数会调用__raise_softirq_irqoff(NET_RX_SOFTIRQ);触发网络接收数据包的软中断函数net_rx_action。
* 软中断是Linux内核完成中断推后处理工作的一种机制,请参考《Linux内核设计与实现》第二版。
* 唯一需要提及的是,这个软中断函数net_rx_action是在网络系统初始化的时候(linux/net/core/dev.c):注册的
* open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
*/
netif_rx(skb);
out:
return;
}


/*
* NAPI 的poll轮询函数.
*/
static int snull_poll(struct net_device *dev, int *budget)
{
/*
* dev->quota是当前CPU能够从所有接口中接收数据包的最大数目,budget是在
* 初始化阶段分配给接口的weight值,轮询函数必须接受二者之间的最小值。表示
* 轮询函数本次要处理的数据包个数。
*/
int npackets = 0, quota = min(dev->quota, *budget);
struct sk_buff *skb;
struct snull_priv *priv = netdev_priv(dev);
struct snull_packet *pkt;

/*这个循环次数由要处理的数据包个数,并且,以处理完接收队列为上限*/
while (npackets < quota && priv->rx_queue) {
/*从队列中取出数据包*/
pkt = snull_dequeue_buf(dev);

/*接下来的处理,和传统中断事实上是一样的*/
skb = dev_alloc_skb(pkt->datalen + 2);
if (! skb) {
if (printk_ratelimit())
printk(KERN_NOTICE "snull: packet dropped\n");
priv->stats.rx_dropped++;
snull_release_buffer(pkt);
continue;
}
skb_reserve(skb, 2); /* align IP on 16B boundary */
memcpy(skb_put(skb, pkt->datalen), pkt->data, pkt->datalen);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */

/*需要调用netif_receive_skb而不是net_rx将包交给上层协议栈*/
netif_receive_skb(skb);

/*累加计数器 */
npackets++;
priv->stats.rx_packets++;
priv->stats.rx_bytes += pkt->datalen;
snull_release_buffer(pkt);
}
/* If we processed all packets, we're done; tell the kernel and reenable ints */
*budget -= npackets;
dev->quota -= npackets;

//
if (! priv->rx_queue) {
netif_rx_complete(dev);
snull_rx_ints(dev, 1);
return 0;
}
/* We couldn't process everything. */
return 1;
}


/*
* 设备的中断函数,当需要发/收数据,出现错误,连接状态变化等,它会被触发
* 对于典型的网络设备,一般会在open函数中注册中断函数,这样,当网络设备产生中断时,如接收到数据包时,
* 中断函数将会被调用。不过在这个例子中,因为没有真正的物理设备,所以,不存在注册中断,也就不存在触
* 发,对于接收和发送,它都是在自己设计的函数的特定位置被调用。
* 这个中断函数设计得很简单,就是取得设备的状态,判断是“接收”还是“发送”的中断,以调用相应的处理函数。
* 而对于,“是哪个设备产生的中断”这个问题,则由调用它的函数通过第二个参数的赋值来决定。
*/
static void snull_regular_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
int statusword;
struct snull_priv *priv;
struct snull_packet *pkt = NULL;
/*
* 通常,需要检查 "device" 指针以确保这个中断是发送给自己的。
* 然后为 "struct device *dev" 赋
*/
struct net_device *dev = (struct net_device *)dev_id;

/* paranoid */
if (!dev)
return;

/* 锁住设备 */
priv = netdev_priv(dev);
spin_lock(&priv->lock);

/* 取得设备状态指字,对于真实设备,使用I/O指令,比如:int txsr = inb(TX_STATUS); */
statusword = priv->status;
priv->status = 0;
if (statusword & SNULL_RX_INTR) { /*如果是接收数据包的中断*/
/* send it to snull_rx for handling */
pkt = priv->rx_queue;
if (pkt) {
priv->rx_queue = pkt->next;
snull_rx(dev, pkt);
}
}
if (statusword & SNULL_TX_INTR) { /*如果是发送数据包的中断*/
/* a transmission is over: free the skb */
priv->stats.tx_packets++;
priv->stats.tx_bytes += priv->tx_packetlen;
dev_kfree_skb(priv->skb);
}

/* 释放锁 */
spin_unlock(&priv->lock);

/*释放缓冲区*/
if (pkt) snull_release_buffer(pkt); /* Do this outside the lock! */
return;
}

/*
* A NAPI interrupt handler.
* 在设备初始化的时候,poll指向指向了snull_poll函数,所以,NAPI中断处理函数很简单,
* 当“接收中断”到达的时候,它就屏蔽此中断,然后netif_rx_schedule函数接收,接收函数
* 会在未来某一时刻调用注册的snull_poll函数实现轮询,当然,对于“传输中断”,处理方法
* 同传统中断处理并无二致。
*/
static void snull_napi_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
int statusword;
struct snull_priv *priv;

/*
* As usual, check the "device" pointer for shared handlers.
* Then assign "struct device *dev"
*/
struct net_device *dev = (struct net_device *)dev_id;
/* ... and check with hw if it's really ours */

/* paranoid */
if (!dev)
return;

/* Lock the device */
priv = netdev_priv(dev);
spin_lock(&priv->lock);

/* retrieve statusword: real netdevices use I/O instructions */
statusword = priv->status;
priv->status = 0;

/*
* 唯一的区别就在这里,它先屏蔽掉接收中断,然后调用netif_rx_schedule,而不是netif_rx
* 重点还是在于poll函数的设计。
*/
if (statusword & SNULL_RX_INTR) {
snull_rx_ints(dev, 0); /* Disable further interrupts */
netif_rx_schedule(dev);
}
if (statusword & SNULL_TX_INTR) {
/* a transmission is over: free the skb */
priv->stats.tx_packets++;
priv->stats.tx_bytes += priv->tx_packetlen;
dev_kfree_skb(priv->skb);
}

/* Unlock the device and we are done */
spin_unlock(&priv->lock);
return;
}



/*
* Transmit a packet (low level interface)
*/
static void snull_hw_tx(char *buf, int len, struct net_device *dev)
{
/*
* This function deals with hw details. This interface loops
* back the packet to the other snull interface (if any).
* In other words, this function implements the snull behaviour,
* while all other procedures are rather device-independent
*/
struct iphdr *ih;
struct net_device *dest;
struct snull_priv *priv;
u32 *saddr, *daddr;
struct snull_packet *tx_buffer;

/* I am paranoid. Ain't I? */
if (len < sizeof(struct ethhdr) + sizeof(struct iphdr)) {
printk("snull: Hmm... packet too short (%i octets)\n",
len);
return;
}

if (0) { /* enable this conditional to look at the data */
int i;
PDEBUG("len is %i\n" KERN_DEBUG "data:",len);
for (i=14 ; i<len; i++)
printk(" %02x",buf&0xff);
printk("\n");
}
/*
* 取得来源IP和目的IP地址
*/
ih = (struct iphdr *)(buf+sizeof(struct ethhdr));
saddr = &ih->saddr;
daddr = &ih->daddr;

/*
* 这里做了三个调换,以实现欺骗:来源地址第三octet 0<->1,目的地址第三octet 0<->1,设备snX编辑0<->1,这样做的理由是:
* sn0(发):192.168.0.88 --> 192.168.0.99 做了调换后,就变成:
* sn1(收):192.168.1.88 --> 192.168.1.99 因为sn1的地址就是192.168.1.99,所以,它收到这个包后,会回应:
* sn1(发):192.168.1.99 --> 192.168.1.88 ,同样地,做了这样的调换后,就变成:
* sn0(收):192.168.0.99 --> 192.168.0.88 这样,sn0就会收到这个包,实现了ping的请求与应答,^o^
*/
((u8 *)saddr)[2] ^= 1; /* change the third octet (class C) */
((u8 *)daddr)[2] ^= 1;

/*重新计算较验和*/
ih->check = 0; /* and rebuild the checksum (ip needs it) */
ih->check = ip_fast_csum((unsigned char *)ih,ih->ihl);

/*输出调试信息*/
if (dev == snull_devs[0])
PDEBUGG("%08x:%05i --> %08x:%05i\n",
ntohl(ih->saddr),ntohs(((struct tcphdr *)(ih+1))->source),
ntohl(ih->daddr),ntohs(((struct tcphdr *)(ih+1))->dest));
else
PDEBUGG("%08x:%05i <-- %08x:%05i\n",
ntohl(ih->daddr),ntohs(((struct tcphdr *)(ih+1))->dest),
ntohl(ih->saddr),ntohs(((struct tcphdr *)(ih+1))->source));

/*调换设备编号,即dest指向接收设备,原因如前所述*/
dest = snull_devs[dev == snull_devs[0] ? 1 : 0];

/*将发送的数据添加到接收设备的接收队列中*/
priv = netdev_priv(dest);
tx_buffer = snull_get_tx_buffer(dev);
tx_buffer->datalen = len;
memcpy(tx_buffer->data, buf, len);
snull_enqueue_buf(dest, tx_buffer);

/*
* 如果设备接收标志打开,就调用中断函数把数据包发送给目标设备——即触发目的设备的接收中断,这样
* 中断程序就会自接收设备的接收队列中接收数据包,并交给上层网络栈处理
*/
if (priv->rx_int_enabled) {
priv->status |= SNULL_RX_INTR;
snull_interrupt(0, dest, NULL);
}

/*发送完成后,触发“发送完成”中断*/
priv = netdev_priv(dev);
priv->tx_packetlen = len;
priv->tx_packetdata = buf;
priv->status |= SNULL_TX_INTR;

/*
* 如果insmod驱动的时候,指定了模拟硬件锁的lockup=n,则在会传输n个数据包后,模拟一次硬件锁住的情况,
* 这是通过调用netif_stop_queue函数来停止传输队列,标记“设备不能再传输数据包”实现的,它将在传输的超
* 时函数中,调用netif_wake_queue函数来重新启动传输队例,同时超时函数中会再次调用“接收中断”,这样
* stats.tx_packets累加,又可以重新传输新的数据包了(参接收中断和超时处理函数的实现)。
*/
if (lockup && ((priv->stats.tx_packets + 1) % lockup) == 0) {
/* Simulate a dropped transmit interrupt */
netif_stop_queue(dev); /*停止数据包的传输*/
PDEBUG("Simulate lockup at %ld, txp %ld\n", jiffies,
(unsigned long) priv->stats.tx_packets);
}
else
/*发送完成后,触发中断,中断函数发现发送完成,就累加计数器,释放skb缓存*/
snull_interrupt(0, dev, NULL);

/*
* 看到这里,我们可以看到,这个发送函数其实并没有把数据包通过I/O指令发送给硬件,而仅仅是做了一个地址/设备的调换,
* 并把数据包加入到接收设备的队例当中。
*/
}

/*
* 数据包传输函数,Linux网络堆栈,在发送数据包时,会调用驱动程序的hard_start_transmit函数,
* 在设备初始化的时候,这个函数指针指向了snull_tx。
*/
int snull_tx(struct sk_buff *skb, struct net_device *dev)
{
int len;
char *data, shortpkt[ETH_ZLEN];
struct snull_priv *priv = netdev_priv(dev);

data = skb->data;
len = skb->len;
if (len < ETH_ZLEN) { /*处理短帧的情况,如果小于以太帧最小长度,不足位全部补0*/
memset(shortpkt, 0, ETH_ZLEN);
memcpy(shortpkt, skb->data, skb->len);
len = ETH_ZLEN;
data = shortpkt;
}
dev->trans_start = jiffies; /* 保存时间戳 */

论坛徽章:
3
金牛座
日期:2014-06-14 22:04:062015年辞旧岁徽章
日期:2015-03-03 16:54:152015年迎新春徽章
日期:2015-03-04 09:49:45
2 [报告]
发表于 2008-08-18 10:28 |只看该作者

继续

/*
* 因为“发送”完成后,需要释放skb,所以,先要保存它 ,释放都是在网卡发送完成,产生中断,而中断函数收
* 到网卡的发送完成的中断信号后释放
*/
priv->skb = skb;

/*
* 让硬件把数据包发送出去,对于物理设备,就是一个读网卡寄存器的过程,不过,这里,只是一些
* 为了实现演示功能的虚假的欺骗函数,比如操作源/目的IP,然后调用接收函数(所以,接收时不用调用中断)
*/
snull_hw_tx(data, len, dev);

return 0; /* Our simple device can not fail */
}

/*
* 传输超时处理函数
* 比如在传输数据时,由于缓冲已满,需要关闭传输队列,但是驱动程序是不能丢弃数据包,它将在“超时”的时候触发
* 超时处理函数,这个函数将发送一个“传输中断”,以填补丢失的中断,并重新启动传输队例子
*/
void snull_tx_timeout (struct net_device *dev)
{
struct snull_priv *priv = netdev_priv(dev);

PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
jiffies - dev->trans_start);
/* Simulate a transmission interrupt to get things moving */
priv->status = SNULL_TX_INTR;
snull_interrupt(0, dev, NULL);
priv->stats.tx_errors++;
netif_wake_queue(dev);
return;
}



/*
* Ioctl 命令
*/
int snull_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
PDEBUG("ioctl\n");
return 0;
}

/*
* 获取设备的状态
*/
struct net_device_stats *snull_stats(struct net_device *dev)
{
struct snull_priv *priv = netdev_priv(dev);
return &priv->stats;
}

/*
* 有些网络有硬件地址(比如Ethernet),并且在发送硬件帧时需要知道目的硬件 地址会进行ARP请求/应答,以完成MAC地址解析,
* 需要做arp请求的设备在发送之前会调用驱动程序的rebuild_header函数。需要做arp的的设备在发送之前会调用驱动程序的
* rebuild_header方 法。调用的主要参数包括指向硬件帧头的指针,协议层地址。如果驱动程序能够解 析硬件地址,就返回1,
* 如果不能,返回0。
* 当然,作者实现的演示设备中,不支持这个过程。
*/
int snull_rebuild_header(struct sk_buff *skb)
{
struct ethhdr *eth = (struct ethhdr *) skb->data;
struct net_device *dev = skb->dev;

memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, dev->dev_addr, dev->addr_len);
eth->h_dest[ETH_ALEN-1] ^= 0x01; /* dest is us xor 1 */
return 0;
}

/*
* 为上层协议创建一个二层的以太网首部。
* 事实上,如果一开始调用alloc_etherdev分配以太设备,它会调用ether_setup进行初始化,初始化函数会设置:
* dev->hard_header = eth_header;
* dev->rebuild_header = eth_rebuild_header;
* 驱动开发人员并不需要自己来实现这个函数,作者这样做,只是为了展示细节。
*/

int snull_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned int len)
{
/*获取以太头指针*/
struct ethhdr *eth = (struct ethhdr *)skb_push(skb,ETH_HLEN);

eth->h_proto = htons(type); /*填写协议*/

/*填写来源/目的MAC地址,如果地址为空,则用设备自己的地址代替之*/
memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, daddr ? daddr : dev->dev_addr, dev->addr_len);

/*
* 将第一个octet设为0,主要是为了可以在不支持组播链路,如ppp链路上运行
* PS:作者这样做,仅仅是演示在PC机上的实现,事实上,直接使用ETH_ALEN-1是
* 不适合“大头”机器的。
*/
eth->h_dest[ETH_ALEN-1] ^= 0x01; /* dest is us xor 1 */
return (dev->hard_header_len);
}

/*
* 改变设备MTU值.
*/
int snull_change_mtu(struct net_device *dev, int new_mtu)
{
unsigned long flags;
struct snull_priv *priv = netdev_priv(dev);
spinlock_t *lock = &priv->lock;

/* check ranges */
if ((new_mtu < 68) || (new_mtu > 1500))
return -EINVAL;
/*
* Do anything you need, and the accept the value
*/
spin_lock_irqsave(lock, flags);
dev->mtu = new_mtu;
spin_unlock_irqrestore(lock, flags);
return 0; /* success */
}

/*
* 设备初始化函数,它必须在 register_netdev 函数被调用之前调用
*/
void snull_init(struct net_device *dev)
{
/*设备的“私有”结构,保存一些设备一些“私有数据”*/
struct snull_priv *priv;
#if 0
/*
* Make the usual checks: check_region(), probe irq, ... -ENODEV
* should be returned if no device found. No resource should be
* grabbed: this is done on open().
*/
#endif

/*
* 初始化以太网设备的一些共用的成员
*/
ether_setup(dev); /* assign some of the fields */

/*设置设备的许多成员函数指针*/
dev->open = snull_open;
dev->stop = snull_release;
dev->set_config = snull_config;
dev->hard_start_xmit = snull_tx;
dev->do_ioctl = snull_ioctl;
dev->get_stats = snull_stats;
dev->change_mtu = snull_change_mtu;
dev->rebuild_header = snull_rebuild_header;
dev->hard_header = snull_header;
dev->tx_timeout = snull_tx_timeout;
dev->watchdog_timeo = timeout;

/*如果使用NAPI,设置pool函数*/
if (use_napi) {
dev->poll = snull_poll;
dev->weight = 2; /*weight是接口在资源紧张时,在接口上能承受多大流量的权重*/
}
/* keep the default flags, just add NOARP */
dev->flags |= IFF_NOARP;
dev->features |= NETIF_F_NO_CSUM;
dev->hard_header_cache = NULL; /* Disable caching */

/*
* 取得私有数据区,并初始化它.
*/
priv = netdev_priv(dev);
memset(priv, 0, sizeof(struct snull_priv));
spin_lock_init(&priv->lock);
snull_rx_ints(dev, 1); /* 打开接收中断标志 */
snull_setup_pool(dev); /*设置使用NAPI时的接收缓冲池*/
}

/*
* The devices
*/

struct net_device *snull_devs[2];



/*
* Finally, the module stuff
*/

void snull_cleanup(void)
{
int i;

for (i = 0; i < 2; i++) {
if (snull_devs) {
unregister_netdev(snull_devs);
snull_teardown_pool(snull_devs);
free_netdev(snull_devs);
}
}
return;
}

/*模块初始化,初始化的只有一个工作:分配一个设备结构并注册它*/
int snull_init_module(void)
{
int result, i, ret = -ENOMEM;

/*中断函数指针,因是否使用NAPI而指向不同的中断函数*/
snull_interrupt = use_napi ? snull_napi_interrupt : snull_regular_interrupt;

/*
* 分配两个设备,网络设备都是用struct net_device来描述,alloc_netdev分配设备,第三个参数是
* 对struct net_device结构成员进行初始化的函数,对于以太网来说,可以把alloc_netdev/snull_init
* 两个函数变为一个,alloc_etherdev,它会自动调用以太网的初始化函数ether_setup,因为以太网的初
* 始化函数工作都是近乎一样的 */
snull_devs[0] = alloc_netdev(sizeof(struct snull_priv), "sn%d",
snull_init);
snull_devs[1] = alloc_netdev(sizeof(struct snull_priv), "sn%d",
snull_init);
/*分配失败*/
if (snull_devs[0] == NULL || snull_devs[1] == NULL)
goto out;

ret = -ENODEV;
/*向内核注册网络设备,这样,设备就可以被使用了*/
for (i = 0; i < 2; i++)
if ((result = register_netdev(snull_devs)))
printk("snull: error %i registering device \"%s\"\n",
result, snull_devs->name);
else
ret = 0;
out:
if (ret)
snull_cleanup();
return ret;
}


module_init(snull_init_module);
module_exit(snull_cleanup);

论坛徽章:
0
3 [报告]
发表于 2008-08-18 10:30 |只看该作者
好共享  

论坛徽章:
0
4 [报告]
发表于 2008-08-20 14:12 |只看该作者

回复 #2 dreamice 的帖子

好东西 呵呵:wink: :wink:

论坛徽章:
0
5 [报告]
发表于 2008-08-22 13:59 |只看该作者

回复 #1 dreamice 的帖子

LZ你好,请教一个关于应用程序中自动检测设备是否插网线的问题,我现在不确认是否跟网卡的驱动有关系的;

现象是这样的,我之前使用的开发板上有两个网卡,但是实际测试使用的时候只用一个网卡,网卡芯片是DM9000的,驱动
是动态加载的,然后我做了个应用程序,里面实现了自动检测网口是否插网线的功能,经过实际的测试,软件能够自动检测出
设备是否插网线;

现在公司刚买回来一些新的板子,上面的网卡(AC101)驱动是编译进内核的,内核映像文件由经销商提供的,我们没有办法接触到驱动源码,我把自己的应用程序写进板子后自动检测网卡的功能就不能用了,一直认为网口没有插网线;

另外我还在其他的硬件上也测试过我的应用软件,网卡也是(AC101)的,测试后发现也是好的;

我想问下据此是否可以确认跟网卡的驱动有关呢?


另外我还想问下如何在网卡驱动里加支持IFCONFIG命令配置网络参数的功能呢?

论坛徽章:
3
金牛座
日期:2014-06-14 22:04:062015年辞旧岁徽章
日期:2015-03-03 16:54:152015年迎新春徽章
日期:2015-03-04 09:49:45
6 [报告]
发表于 2008-08-22 14:09 |只看该作者

回复 #5 qks5201314 的帖子

首先,检测网卡是否插线,这个肯定是和网卡驱动有关的。应用层测试程序最终是要调用到网卡驱动,来检测其工作状态,获取相关属性等等,这显然是和网卡驱动相关的;
另外,ifconfig和驱动是没有直接关系的,不应该在驱动里面去实现这个功能,这是一个应用程序(shell)指令。

论坛徽章:
0
7 [报告]
发表于 2008-08-22 14:26 |只看该作者
哦,那么LZ帮忙分析下下面这个代码为什么不能在那个板子上检测到是否插网线的功能好啊:


short get_flags(const char *dev)
{
        struct ifreq ifr;

        bzero((char *)&ifr, sizeof(ifr));
        strcpy(ifr.ifr_name, dev);
        
        if (ioctl(tSock,SIOCGIFFLAGS, (char *)&ifr) < 0){
                close(tSock);
            return(0);
        }
        
         
        return(ifr.ifr_flags);
}

void * dectwire(void *t)
{               

        while(1)
        {       
                if (((get_flags("eth0")) & IFF_RUNNING) == 0){                       
                        printf("---------------------------------------------wireless---------------------------\n");
                }else{               
                        printf("---------------------------------------------wire---------------------------\n");               
                }               
               
                sleep(1);
        }
}

论坛徽章:
0
8 [报告]
发表于 2008-08-22 14:28 |只看该作者
顶dreamice  保存下来慢慢看

论坛徽章:
3
金牛座
日期:2014-06-14 22:04:062015年辞旧岁徽章
日期:2015-03-03 16:54:152015年迎新春徽章
日期:2015-03-04 09:49:45
9 [报告]
发表于 2008-08-22 14:33 |只看该作者

回复 #7 qks5201314 的帖子

有几个问题:
你的ioctl传递的参数是否正确?
另一个问题不能确定,驱动程序是否实现了ioctl。

你上面程序的执行结果是什么?

论坛徽章:
0
10 [报告]
发表于 2008-08-22 14:36 |只看该作者
一直打印出这个,不管有没有插网线,
          printf("---------------------------------------------wireless---------------------------\n");

因为驱动程序不是我们自己做的,不知道是否支持ioctl的,我可以确认传递的参数是正确的,因为我在两种不同的机器上测试过此功能的;
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP