免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 841 | 回复: 0
打印 上一主题 下一主题

AT&T汇编语言与GCC内嵌汇编简介_2 [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2008-05-07 13:30 |只看该作者 |倒序浏览
2.3.4.3       “&”限制符限制符“&”在内核中使用的比较多,它表示输入和输出操作数不能使用相同的寄存器,这样可以避免很多错误。举一个例子,下面代码的作用是将函数foo的返回值存入变量ret中: __asm__ ( “call foo;movl %%edx,%1”, :”=a”(ret) : ”r”(bar) ); 我们知道函数的int型返回值存放在%eax中,但是gcc编译的结果是输入和输出同时使用了寄存器%eax,如下:    movl bar, %eax    #APP    call foo    movl %ebx,%eax#NO_APP    movl %eax, ret 结果显然不对,原因是GCC并不知道%eax中的值是我们所要的。避免这种情况的方法是使用“&”限定符,这样bar就不会再使用%eax寄存器,因为已被ret指定使用。_asm__ ( “call foo;movl %%edx,%1”,:”=&a”(ret) : ”r”(bar) ); 2.3.5 破坏描述部分2.3.5.1            寄存器破坏描述符通常编写程序只使用一种语言:高级语言或者汇编语言。高级语言编译的步骤大致如下:l        预处理;l        编译l        汇编l        链接我们这里只关心第二步编译(将C代码转换成汇编代码):因为所有的代码都是用高级语言编写,编译器可以识别各种语句的作用,在转换的过程中所有的寄存器都由编译器决定如何分配使用,它有能力保证寄存器的使用不会冲突;也可以利用寄存器作为变量的缓冲区,因为寄存器的访问速度比内存快很多倍。如果全部使用汇编语言则由程序员去控制寄存器的使用,只能靠程序员去保证寄存器使用的正确性。但是如果两种语言混用情况就变复杂了,因为内嵌的汇编代码可以直接使用寄存器,而编译器在转换的时候并不去检查内嵌的汇编代码使用了哪些寄存器(因为很难检测汇编指令使用了哪些寄存器,例如有些指令隐式修改寄存器,有时内嵌的汇编代码会调用其他子过程,而子过程也会修改寄存器),因此需要一种机制通知编译器我们使用了哪些寄存器(程序员自己知道内嵌汇编代码中使用了哪些寄存器),否则对这些寄存器的使用就有可能导致错误,修改描述部分可以起到这种作用。当然内嵌汇编的输入输出部分指明的寄存器或者指定为“r”,“g”型由编译器去分配的寄存器就不需要在破坏描述部分去描述,因为编译器已经知道了。破坏描述符由逗号格开的字符串组成,每个字符串描述一种情况,一般是寄存器名;除寄存器外还有“memory”。例如:“%eax”,“%ebx”,“memory”等。下面看个例子就很清楚为什么需要通知GCC内嵌汇编代码中隐式(称它为隐式是因为GCC并不知道)使用的寄存器。在内嵌的汇编指令中可能会直接引用某些寄存器,我们已经知道AT&T格式的汇编语言中,寄存器名以“%”作为前缀,为了在生成的汇编程序中保留这个“%”号,在asm语句中对寄存器的引用必须用“%%”作为寄存器名称的前缀。原因是“%”在asm,内嵌汇编语句中的作用与“\”在C语言中的作用相同,因此“%%”转换后代表“%”。例(没有使用修改描述符):int main(void)   {     int input, output,temp;        input = 1;__asm__ __volatile__ ("movl $0, %%eax;\n\t movl %%eax, %1;\n\tmovl %2, %%eax;\n\tmovl %%eax, %0;\n\t":"=m"(output),"=m"(temp)    /* output */            :"r"(input)     /* input */    ); return 0;}这段代码使用%eax作为临时寄存器,功能相当于C代码:“temp = 0;output=input”, 对应的汇编代码如下:         movl $1,-4(%ebp)         movl -4(%ebp),%eax /APP         movl $0, %eax;     movl %eax, -12(%ebp);         movl %eax, %eax;         movl %eax, -8(%ebp);       /NO_APP 显然GCC给input分配的寄存器也是%eax,发生了冲突,output的值始终为0,而不是input。使用破坏描述后的代码: int main(void){int input, output,temp;              input = 1;    __asm__ __volatile__ ( "movl $0, %%eax;\n\t                         movl %%eax, %1;\n\t                             movl %2, %%eax;\n\t                         movl %%eax, %0;\n\t"                         :"=m"(output),"=m"(temp)    /* output */                         :"r"(input)     /* input */                         :"eax"); /* 描述符 */    return 0;} 对应的汇编代码:         movl $1,-4(%ebp)         movl -4(%ebp),%edx /APP         movl $0, %eax;         movl %eax, -12(%ebp);         movl %edx, %eax;         movl %eax, -8(%ebp); /NO_APP 通过破坏描述部分,GCC得知%eax已被使用,因此给input分配了%edx。在使用内嵌汇编时请记住一点:尽量告诉GCC尽可能多的信息,以防出错。如果你使用的指令会改变CPU的条件寄存器cc,需要在修改描述部分增加“cc”。2.3.5.2        memory破坏描述符“memory”比较特殊,可能是内嵌汇编中最难懂部分。为解释清楚它,先介绍一下编译器的优化知识,再看C关键字volatile。最后去看该描述符。2.3.5.2.1      编译器优化介绍内存访问速度远不及CPU处理速度,为提高机器整体性能,在硬件上引入硬件高速缓存Cache,加速对内存的访问。另外在现代CPU中指令的执行并不一定严格按照顺序执行,没有相关性的指令可以乱序执行,以充分利用CPU的指令流水线,提高执行速度。以上是硬件级别的优化。再看软件一级的优化:一种是在编写代码时由程序员优化,另一种是由编译器进行优化。编译器优化常用的方法有:将内存变量缓存到寄存器;调整指令顺序充分利用CPU指令流水线,常见的是重新排序读写指令。对常规内存进行优化的时候,这些优化是透明的,而且效率很好。由编译器优化或者硬件重新排序引起的问题的解决办法是在从硬件(或者其他处理器)的角度看必须以特定顺序执行的操作之间设置内存屏障(memory barrier),linux提供了一个宏解决编译器的执行顺序问题。void Barrier(void)这个函数通知编译器插入一个内存屏障,但对硬件无效,编译后的代码会把当前CPU寄存器中的所有修改过的数值存入内存,需要这些数据的时候再重新从内存中读出。2.3.5.2.2      C 语言关键字volatileC 语言关键字volatile(注意它是用来修饰变量而不是上面介绍的__volatile__)表明某个变量的值可能在外部被改变,因此对这些变量的存取不能缓存到寄存器,每次使用时需要重新存取。该关键字在多线程环境下经常使用,因为在编写多线程的程序时,同一个变量可能被多个线程修改,而程序通过该变量同步各个线程,例如: DWORD __stdcall threadFunc(LPVOID signal){ int* intSignal=reinterpret_cast(signal);             *intSignal=2;         while(*intSignal!=1)               sleep(1000); return 0; } 该线程启动时将intSignal置为2,然后循环等待直到intSignal为1,时退出。显然intSignal的值必须在外部被改变,否则该线程不会退出。但是实际运行的时候该线程却不会退出,即使在外部将它的值改为1,看一下对应的伪汇编代码就明白了: mov ax,signal label: if(ax!=1) goto label 对于C编译器来说,它并不知道这个值会被其他线程修改。自然就把它cache在寄存器里面。记住,C编译器是没有线程概念的!这时候就需要用到volatile。volatile的本意是指:这个值可能会在当前线程外部被改变。也就是说,我们要在threadFunc中的intSignal前面加上volatile关键字,这时候,编译器知道该变量的值会在外部改变,因此每次访问该变量时会重新读取,所作的循环变为如下面伪码所示: label: mov ax,signal if(ax!=1)goto label 2.3.5.2.3       Memory有了上面的知识就不难理解Memory修改描述符了,Memory描述符告知GCC:         (1)不要将该段内嵌汇编指令与前面的指令重新排序;也就是在执行内嵌汇编代码之前,它前面的指令都执行完毕。        (2)不要将变量缓存到寄存器,因为这段代码可能会用到内存变量,而这些内存变量会以不可预知的方式发生改变,因此GCC插入必要的代码先将缓存到寄存器的变量值写回内存,如果后面又访问这些变量,需要重新访问内存。如果汇编指令修改了内存,但是GCC本身却察觉不到,因为在输出部分没有描述,此时就需要在修改描述部分增加“memory”,告诉GCC内存已经被修改,GCC得知这个信息后,就会在这段指令之前,插入必要的指令将前面因为优化Cache到寄存器中的变量值先写回内存,如果以后又要使用这些变量再重新读取。 例: ……….. Char test[100]; char a; char c;   c = 0; test[0] = 1; …….. a = test [0]; …… __asm__( "cld\n\t" "rep\n\t" "stosb" : /* no output */                      : "a" (c),"D" (test),"c" (100)                       : "cx","di","memory"); ………. // 我们知道test[0] 已经修改,所以重新读取 a=test[0];   …… 这段代码中的汇编指令功能与memset相当,也就是相当于调用了memset(test,0,100);它使用stosb修改了test数组的内容,但是没有在输入或输出部分去描述操作数,因为这两条指令都不需要显式的指定操作数,因此需要增加“memory”通知GCC。现在假设:GCC在优化时将test[0]放到了%eax寄存器,那么test[0] = 1对应于%eax=1,a = test [0]被换为a=%eax,如果在那段汇编指令中不使用“memory”,Gcc,不知道现在test[0]的值已经被改变了(如果整段代码都是我们自己使用汇编编写,我们自己当然知道这些内存的修改情况,我们也可以人为的去优化,但是现在除了我们编写的那一小段外,其他汇编代码都是GCC生成的,它并没有那么智能,知道这段代码会修改test[0]),结果其后的a=test[0],转换为汇编后却是a=%eax,因为GCC不知道显式的改变了test数组,结果出错了。如果增加了“memory”修饰符,GCC知道:“这段代码修改了内存,但是也仅此而已,它并不知道到底修改了哪些变量”,因此他将以前因优化而缓存到寄存器的变量值全部写回内存,从内嵌汇编开始,如果后面的代码又要存取这些变量,则重新存取内存(不会将读写操作映射到以前缓存的那个寄存器)。这样上面那段代码最后一句就不再是%eax=1,而是test[0] = 1。这两条对实现临界区至关重要,第一条保证不会因为指令的重新排序将临界区内的代码调到临界区之外(如果临界区内的指令被重排序放到临界区之外,What will happen?),第二条保证在临界区访问的变量的值,肯定是最新的值,而不是缓存在寄存器中的值,否则就会导致奇怪的错误。例如下面的代码: int del_timer(struct timer_list * timer) {         int ret = 0;         if (timer->next) {                unsigned long flags;                struct timer_list * next;                save_flags(flags);                cli(); // 临界区开始                if ((next = timer->next) != NULL) {                       (next->prev = timer->prev)->next = next;                       timer->next = timer->prev = NULL;                       ret = 1;                }      // 临界区结束              restore_flags(flags);         }         return ret; } 它先判断timer->next的值,如果是空直接返回,无需进行下面的操作。如果不是空,则进入临界区进行操作,但是cli()的实现(见下面)没有使用“memory”,timer->next的值可能会被缓存到寄存器中,后面if ((next =timer->next) != NULL)会从寄存器中读取timer->next的值,如果在if (timer->next)之后,进入临界区之前,timer->next的值可能被在外部改变,这时肯定会出现异常情况,而且这种情况很难Debug。但是如果cli使用“memory”,那么if ((next = timer->next) !=NULL)语句会重新从内存读取timer->next的值,而不会从寄存器中取,这样就不会出现问题啦。2.4 版内核中cli和sti的代码如下: #define __cli()              __asm__ __volatile__("cli": : :"memory") #define __sti()             __asm__ __volatile__("sti": : :"memory") 通过上面的例子,读者应该知道,为什么指令没有修改内存,但是却使用“memory”修改描述符的原因了吧。应从指令的上下文去理解为什么要这样做。使用“volatile”也可以达到这个目的,但是我们在每个变量前增加该关键字,不如使用“memory”方便。2.4   GCC如何编译内嵌汇编代码GCC 编译内嵌汇编代码的步骤如下:1.输入变量与占位符根据限定符和破坏描述部分,为输入和输出部分的变量分配合适的寄存器,如果限定符指定为立即数(“i”),或内存变量(“m”),则不需要该步骤,如果限定符没有具体指定输入操作数的类型(如“g”),GCC会视需要决定是否将该操作数输入到某个寄存器。这样每个占位符都与某个寄存器、内存变量或立即数形成了一一对应的关系。对分配了寄存器的输入变量需要增加代码将它的值读入寄存器。另外还要根据破坏描述符的部分增加额外代码。2.指令模板部分然后根据这种一一对应的关系,用这些寄存器、内存变量或立即数来取代汇编代码中的占位符。3.变量输出按照输出限定符的指定将寄存器的内容输出到某个内存变量中,如果输出操作数的限定符指定为内存变量(“m”),则该步骤被省略。3 后记该文档参照了Web上的许多与GCC内嵌汇编相关的文章编写而成,在此表示感谢,如有问题请发Email至:chforest_chang@hotmail.com 一起讨论。

本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u2/68413/showart_679931.html
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP