- 论坛徽章:
- 0
|
schedule()函数分析:
/* * 'schedule()' is the scheduler function. It's a very simple and nice * scheduler: it's not perfect, but certainly works for most things. * * The goto is "interesting". * * NOTE!! Task 0 is the 'idle' task, which gets called when no other * tasks can run. It can not be killed, and it cannot sleep. The 'state' * information in task[0] is never used. */asmlinkage void schedule(void){ struct schedule_data * sched_data; struct task_struct *prev, *next, *p; struct list_head *tmp; int this_cpu, c; spin_lock_prefetch(&runqueue_lock); if (!current->active_mm) BUG();need_resched_back: prev = current; this_cpu = prev->processor; if (unlikely(in_interrupt())) { printk("Scheduling in interrupt\n"); BUG(); } release_kernel_lock(prev, this_cpu); /* * 'sched_data' is protected by the fact that we can run * only one process per CPU. */ sched_data = & aligned_data[this_cpu].schedule_data; spin_lock_irq(&runqueue_lock); /* move an exhausted RR process to be last.. */ if (unlikely(prev->policy == SCHED_RR)) /* * 如果采用轮转法调度,则重新检查counter是否为0, 若是则将其挂到运行队列的最后 */ if (!prev->counter) { prev->counter = NICE_TO_TICKS(prev->nice); move_last_runqueue(prev); } switch (prev->state) { case TASK_INTERRUPTIBLE: /* * 如果是TASK_INTERRUPTIBLE,并且能够唤醒它的信号已经来临, * 则将状态置为TASK_RUNNING */ if (signal_pending(prev)) { prev->state = TASK_RUNNING; break; } default: del_from_runqueue(prev); case TASK_RUNNING:; } prev->need_resched = 0; /* * this is the scheduler proper: */ repeat_schedule: /* * Default process to select.. */ next = idle_task(this_cpu); c = -1000; list_for_each(tmp, &runqueue_head) { /* * 遍历运行队列,查找优先级最高的进程, 优先级最高的进程将获得CPU */ p = list_entry(tmp, struct task_struct, run_list); if (can_schedule(p, this_cpu)) { /* * goodness()中,如果是实时进程,则weight = 1000 + p->rt_priority, * 使实时进程的优先级永远比非实时进程高 */ int weight = goodness(p, this_cpu, prev->active_mm); if (weight > c) //注意这里是”>”而不是”>=”,如果权值相同,则先来的先上 c = weight, next = p; } } /* Do we need to re-calculate counters? */ if (unlikely(!c)) { /* * 如果当前优先级为0,那么整个运行队列中的进程将重新计算优先权 */ struct task_struct *p; spin_unlock_irq(&runqueue_lock); read_lock(&tasklist_lock); for_each_task(p) p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice); read_unlock(&tasklist_lock); spin_lock_irq(&runqueue_lock); goto repeat_schedule; } /* * from this point on nothing can prevent us from * switching to the next task, save this fact in sched_data. */ sched_data->curr = next; task_set_cpu(next, this_cpu); spin_unlock_irq(&runqueue_lock); if (unlikely(prev == next)) { /* We won't go through the normal tail, so do this by hand */ prev->policy &= ~SCHED_YIELD; goto same_process; } kstat.context_swtch++; /* * there are 3 processes which are affected by a context switch: * * prev == .... ==> (last => next) * * It's the 'much more previous' 'prev' that is on next's stack, * but prev is set to (the just run) 'last' process by switch_to(). * This might sound slightly confusing but makes tons of sense. */ prepare_to_switch(); { struct mm_struct *mm = next->mm; struct mm_struct *oldmm = prev->active_mm; if (!mm) { //如果是内核线程的切换,则不做页表处理 if (next->active_mm) BUG(); next->active_mm = oldmm; atomic_inc(&oldmm->mm_count); enter_lazy_tlb(oldmm, next, this_cpu); } else { if (next->active_mm != mm) BUG(); switch_mm(oldmm, mm, next, this_cpu); //如果是用户进程,切换页表 } if (!prev->mm) { prev->active_mm = NULL; mmdrop(oldmm); } } /* * This just switches the register state and the stack. */ switch_to(prev, next, prev); __schedule_tail(prev); same_process: reacquire_kernel_lock(current); if (current->need_resched) goto need_resched_back; return;}
本文来自ChinaUnix博客,如果查看原文请点:http://blog.chinaunix.net/u1/51591/showart_454711.html |
|