免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
123下一页
最近访问板块 发新帖
查看: 29063 | 回复: 23

linux内核分析(转自某位大哥网上的笔记) [复制链接]

论坛徽章:
0
发表于 2003-04-21 13:14 |显示全部楼层
启动

    当PC启动时,Intel系列的CPU首先进入的是实模式,并开始执行位于地址0xFFFF0处的代码,也就是ROM-BIOS起始位置的代码。BIOS先进行一系列的系统自检,然后初始化位于地址0的中断向量表。最后BIOS将启动盘的第一个扇区装入到0x7C00,并开始执行此处的代码.这就是对内核初始化过程的一个最简单的描述。
    最初,Linux核心的最开始部分是用8086汇编语言编写的。当开始运行时,核心将自己装入到绝对地址0x90000,再将其后的2k字节装入到地址0x90200处,最后将核心的其余部分装入到0x10000。

    当系统装入时,会显示Loading...信息。装入完成后,控制转向另一个实模式下的汇编语言代码boot/Setup.S。Setup部分首先设置一些系统的硬件设备,然后将核心从0x10000处移至0x1000处。这时系统转入保护模式,开始执行位于0x1000处的代码。

    接下来是内核的解压缩。0x1000处的代码来自于文件Boot/head.S,它用来初始化寄存器和调用decompress_kernel( )程序。decompress_kernel( )程序由Boot/inflate.c, Boot/unzip.c 和Boot/misc.c组成。解压缩后的数据被装入到了0x100000处,这也是Linux不能在内存小于2M的环境下运行的主要原因。

    解压后的代码在0x1010000处开始执行,紧接着所有的32位的设置都将完成: IDT、GDT和LDT将被装入,处理器初始化完毕,设置好内存页面,最终调用start_kernel过程。这大概是整个内核中最为复杂的部分。

[系统开始运行]
    Linux kernel 最早的C代码从汇编标记startup_32开始执行

|startup_32:
   |start_kernel
      |lock_kernel
      |trap_init
      |init_IRQ
      |sched_init
      |softirq_init
      |time_init
      |console_init
      |#ifdef CONFIG_MODULES
         |init_modules
      |#endif
      |kmem_cache_init
      |sti
      |calibrate_delay
      |mem_init
      |kmem_cache_sizes_init
      |pgtable_cache_init
      |fork_init
      |proc_caches_init
      |vfs_caches_init
      |buffer_init
      |page_cache_init
      |signals_init
      |#ifdef CONFIG_PROC_FS
        |proc_root_init
      |#endif
      |#if defined(CONFIG_SYSVIPC)
         |ipc_init
      |#endif
      |check_bugs
      |smp_init
      |rest_init
         |kernel_thread
         |unlock_kernel
         |cpu_idle


·startup_32 [arch/i386/kernel/head.S]
·start_kernel [init/main.c]
·lock_kernel [include/asm/smplock.h]
·trap_init [arch/i386/kernel/traps.c]
·init_IRQ [arch/i386/kernel/i8259.c]
·sched_init [kernel/sched.c]
·softirq_init [kernel/softirq.c]
·time_init [arch/i386/kernel/time.c]
·console_init [drivers/char/tty_io.c]
·init_modules [kernel/module.c]
·kmem_cache_init [mm/slab.c]
·sti [include/asm/system.h]
·calibrate_delay [init/main.c]
·mem_init [arch/i386/mm/init.c]
·kmem_cache_sizes_init [mm/slab.c]
·pgtable_cache_init [arch/i386/mm/init.c]
·fork_init [kernel/fork.c]
·proc_caches_init
·vfs_caches_init [fs/dcache.c]
·buffer_init [fs/buffer.c]
·page_cache_init [mm/filemap.c]
·signals_init [kernel/signal.c]
·proc_root_init [fs/proc/root.c]
·ipc_init [ipc/util.c]
·check_bugs [include/asm/bugs.h]
·smp_init [init/main.c]
·rest_init
·kernel_thread [arch/i386/kernel/process.c]
·unlock_kernel [include/asm/smplock.h]
·cpu_idle [arch/i386/kernel/process.c]

    start_kernel( )程序用于初始化系统内核的各个部分,包括:

    *设置内存边界,调用paging_init( )初始化内存页面。
    *初始化陷阱,中断通道和调度。
    *对命令行进行语法分析。
    *初始化设备驱动程序和磁盘缓冲区。
    *校对延迟循环。

最后的function'rest_init' 作了以下工作:

   ·开辟内核线程'init'
   ·调用unlock_kernel
   ·建立内核运行的cpu_idle环, 如果没有调度,就一直死循环

实际上start_kernel永远不能终止.它会无穷地循环执行cpu_idle.

    最后,系统核心转向move_to_user_mode( ),以便创建初始化进程(init)。此后,进程0开始进入无限循环。

    初始化进程开始执行/etc/init、/bin/init 或/sbin /init中的一个之后,系统内核就不再对程序进行直接控制了。之后系统内核的作用主要是给进程提供系统调用,以及提供异步中断事件的处理。多任务机制已经建立起来,并开始处理多个用户的登录和fork( )创建的进程。

[init]
    init是第一个进程,或者说内核线程

|init
   |lock_kernel
   |do_basic_setup
      |mtrr_init
      |sysctl_init
      |pci_init
      |sock_init
      |start_context_thread
      |do_init_calls
         |(*call())->; kswapd_init
   |prepare_namespace
   |free_initmem
   |unlock_kernel
   |execve

[目录]

--------------------------------------------------------------------------------


启动步骤

系统引导:
涉及的文件
./arch/$ARCH/boot/bootsect.s
./arch/$ARCH/boot/setup.s

bootsect.S
 这个程序是linux kernel的第一个程序,包括了linux自己的bootstrap程序,
但是在说明这个程序前,必须先说明一般IBM PC开机时的动作(此处的开机是指
"打开PC的电源":

  一般PC在电源一开时,是由内存中地址FFFF:0000开始执行(这个地址一定
在ROM BIOS中,ROM BIOS一般是在FEOOOh到FFFFFh中),而此处的内容则是一个
jump指令,jump到另一个位於ROM BIOS中的位置,开始执行一系列的动作,包
括了检查RAM,keyboard,显示器,软硬磁盘等等,这些动作是由系统测试代码
(system test code)来执行的,随着制作BIOS厂商的不同而会有些许差异,但都
是大同小异,读者可自行观察自家机器开机时,萤幕上所显示的检查讯息。

  紧接着系统测试码之后,控制权会转移给ROM中的启动程序
(ROM bootstrap routine),这个程序会将磁盘上的第零轨第零扇区读入
内存中(这就是一般所谓的boot sector,如果你曾接触过电脑病
毒,就大概听过它的大名),至於被读到内存的哪里呢? --绝对
位置07C0:0000(即07C00h处),这是IBM系列PC的特性。而位在linux开机
磁盘的boot sector上的正是linux的bootsect程序,也就是说,bootsect是
第一个被读入内存中并执行的程序。现在,我们可以开始来
看看到底bootsect做了什么。

第一步
 首先,bootsect将它"自己"从被ROM BIOS载入的绝对地址0x7C00处搬到
0x90000处,然后利用一个jmpi(jump indirectly)的指令,跳到新位置的
jmpi的下一行去执行,

第二步
 接着,将其他segment registers包括DS,ES,SS都指向0x9000这个位置,
与CS看齐。另外将SP及DX指向一任意位移地址( offset ),这个地址等一下
会用来存放磁盘参数表(disk para- meter table )

第三步
 接着利用BIOS中断服务int 13h的第0号功能,重置磁盘控制器,使得刚才
的设定发挥功能。

第四步
 完成重置磁盘控制器之后,bootsect就从磁盘上读入紧邻着bootsect的setup
程序,也就是setup.S,此读入动作是利用BIOS中断服务int 13h的第2号功能。
setup的image将会读入至程序所指定的内存绝对地址0x90200处,也就是在内存
中紧邻着bootsect 所在的位置。待setup的image读入内存后,利用BIOS中断服
务int 13h的第8号功能读取目前磁盘的参数。

第五步
 再来,就要读入真正linux的kernel了,也就是你可以在linux的根目录下看
到的"vmlinuz" 。在读入前,将会先呼叫BIOS中断服务int 10h 的第3号功能,
读取游标位置,之后再呼叫BIOS 中断服务int 10h的第13h号功能,在萤幕上输
出字串"Loading",这个字串在boot linux时都会首先被看到,相信大家应该觉
得很眼熟吧。

第六步
 接下来做的事是检查root device,之后就仿照一开始的方法,利用indirect
jump 跳至刚刚已读入的setup部份

第七步
  setup.S完成在实模式下版本检查,并将硬盘,鼠标,内存参数写入到 INITSEG
中,并负责进入保护模式。

第八步
  操作系统的初始化。





[目录]

--------------------------------------------------------------------------------


bootsect.S

1.将自己移动到0x9000:0x0000处,为内核调入留出地址空间;
2.建立运行环境(ss=ds=es=cs=0x9000, sp=0x4000-12),保证起动程序运行;
3.BIOS初始化0x1E号中断为软盘参数表,将它取来保存备用;
4.将setup读到0x9000:0x0200处;
5.测试软盘参数一个磁道有多少个扇区(也没有什么好办法,只能试试36, 18, 15, 9对不对了);
6.打印“Loading”;
7.读入内核到0x1000:0000(如果是bzImage, 则将每个64K移动到0x100000处,在实模式下,只能调用0x15号中断了,这段代码无法放在bootsect中所以只能放在setup中,幸好此时setup已经读入了);
8.到setup去吧
发发信人: seis (矛), 信区: Linux
标  题: Linux操作系统内核引导程序详细剖析
发信站: BBS 水木清华站 (Fri Feb  2 14:12:43 2001)

! bootsect.s (c) 1991, 1992 Linus Torvalds 版权所有
! Drew Eckhardt修改过
! Bruce Evans (bde)修改过
!
! bootsect.s 被bios-启动子程序加载至0x7c00 (31k)处,并将自己
! 移到了地址0x90000 (576k)处,并跳转至那里。
!
! bde - 不能盲目地跳转,有些系统可能只有512k的低
! 内存。使用中断0x12来获得(系统的)最高内存、等。
!
! 它然后使用BIOS中断将setup直接加载到自己的后面(0x90200)(576.5k),
! 并将系统加载到地址0x10000处。
!
! 注意! 目前的内核系统最大长度限制为(8*65536-4096)(508k)字节长,即使是在
! 将来这也是没有问题的。我想让它保持简单明了。这样508k的最大内核长度应该
! 是足够了,尤其是这里没有象minix中一样包含缓冲区高速缓冲(而且尤其是现在
! 内核是压缩的
!
! 加载程序已经做的尽量地简单了,所以持续的读出错将导致死循环。只能手工重启。
! 只要可能,通过一次取得整个磁道,加载过程可以做的很快的。

#include /* 为取得CONFIG_ROOT_RDONLY参数 */
!! config.h中(即autoconf.h中)没有CONFIG_ROOT_RDONLY定义!!!?

#include

.text

SETUPSECS = 4 ! 默认的setup程序扇区数(setup-sectors)的默认值;

BOOTSEG = 0x7C0 ! bootsect的原始地址;

INITSEG = DEF_INITSEG ! 将bootsect程序移到这个段处(0x9000) - 避开;
SETUPSEG = DEF_SETUPSEG ! 设置程序(setup)从这里开始(0x9020);
SYSSEG = DEF_SYSSEG ! 系统加载至0x1000(65536)(64k)段处;
SYSSIZE = DEF_SYSSIZE ! 系统的大小(0x7F00): 要加载的16字节为一节的数;
!! 以上4个DEF_参数定义在boot.h中:
!! DEF_INITSEG 0x9000
!! DEF_SYSSEG 0x1000
!! DEF_SETUPSEG 0x9020
!! DEF_SYSSIZE 0x7F00 (=32512=31.75k)*16=508k

! ROOT_DEV & SWAP_DEV 现在是由"build"中编制的;
ROOT_DEV = 0
SWAP_DEV = 0
#ifndef SVGA_MODE
#define SVGA_MODE ASK_VGA
#endif
#ifndef RAMDISK
#define RAMDISK 0
#endif
#ifndef CONFIG_ROOT_RDONLY
#define CONFIG_ROOT_RDONLY 1
#endif

! ld86 需要一个入口标识符,这和通常的一样;
.globl _main
_main:
#if 0 /* 调试程序的异常分支,除非BIOS古怪(比如老的HP机)否则是无害的 */
int 3
#endif
mov ax,#BOOTSEG !! 将ds段寄存器置为0x7C0;
mov ds,ax
mov ax,#INITSEG !! 将es段寄存器置为0x9000;
mov es,ax
mov cx,#256 !! 将cx计数器置为256(要移动256个字, 512字节);
sub si,si !! 源地址 ds:si=0x07C0:0x0000;
sub di,di !! 目的地址es:di=0x9000:0x0000;
cld !! 清方向标志;
rep !! 将这段程序从0x7C0:0(31k)移至0x9000:0(576k)处;
movsw !! 共256个字(512字节)(0x200长);
jmpi go,INITSEG !! 间接跳转至移动后的本程序go处;

! ax和es现在已经含有INITSEG的值(0x9000);

go: mov di,#0x4000-12 ! 0x4000(16k)是>;=bootsect + setup 的长度 +
! + 堆栈的长度 的任意的值;
! 12 是磁盘参数块的大小 es:di=0x94000-12=592k-12;

! bde - 将0xff00改成了0x4000以从0x6400处使用调试程序(bde)。如果
! 我们检测过最高内存的话就不用担心这事了,还有,我的BIOS可以被配置为将wini驱动

! 放在内存高端而不是放在向量表中。老式的堆栈区可能会搞乱驱动表;

mov ds,ax ! 置ds数据段为0x9000;
mov ss,ax ! 置堆栈段为0x9000;
mov sp,di ! 置堆栈指针INITSEG:0x4000-12处;
/*
* 许多BIOS的默认磁盘参数表将不能
* 进行扇区数大于在表中指定
* 的最大扇区数( - 在某些情况下
* 这意味着是7个扇区)后面的多扇区的读操作。
*
* 由于单个扇区的读操作是很慢的而且当然是没问题的,
* 我们必须在RAM中(为第一个磁盘)创建新的参数表。
* 我们将把最大扇区数设置为36 - 我们在一个ED 2.88驱动器上所能
* 遇到的最大值。
*
* 此值太高是没有任何害处的,但是低的话就会有问题了。
*
* 段寄存器是这样的: ds=es=ss=cs - INITSEG,(=0X9000)
* fs = 0, gs没有用到。
*/

! 上面执行重复操作(rep)以后,cx为0;

mov fs,cx !! 置fs段寄存器=0;
mov bx,#0x78 ! fs:bx是磁盘参数表的地址;
push ds
seg fs
lds si,(bx) ! ds:si是源地址;
!! 将fs:bx地址所指的指针值放入ds:si中;
mov cl,#6 ! 拷贝12个字节到0x9000:0x4000-12开始处;
cld
push di !! 指针0x9000:0x4000-12处;

rep
movsw

pop di !! di仍指向0x9000:0x4000-12处(参数表开始处);
pop si !! ds =>; si=INITSEG(=0X9000);

movb 4(di),*36 ! 修正扇区计数值;

seg fs
mov (bx),di !! 修改fs:bx(0000:0x007处磁盘参数表的地址为0x9000:0x4000-12;
seg fs
mov 2(bx),es

! 将setup程序所在的扇区(setup-sectors)直接加载到boot块的后面。!! 0x90200开始处
;
! 注意,es已经设置好了。
! 同样经过rep循环后cx为0

load_setup:
xor ah,ah ! 复位软驱(FDC);
xor dl,dl
int 0x13

xor dx,dx ! 驱动器0, 磁头0;
mov cl,#0x02 ! 从扇区2开始,磁道0;
mov bx,#0x0200 ! 置数据缓冲区地址=es:bx=0x9000:0x200;
! 在INITSEG段中,即0x90200处;
mov ah,#0x02 ! 要调用功能号2(读操作);
mov al,setup_sects ! 要读入的扇区数SETUPSECS=4;
! (假释所有数据都在磁头0、磁道0);
int 0x13 ! 读操作;
jnc ok_load_setup ! ok则继续;

push ax ! 否则显示出错信息。保存ah的值(功能号2);
call print_nl !! 打印换行;
mov bp,sp !! bp将作为调用print_hex的参数;
call print_hex !! 打印bp所指的数据;
pop ax

jmp load_setup !! 重试!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!INT 13 - DISK - READ SECTOR(S) INTO MEMORY
!! AH = 02h
!! AL = number of sectors to read (must be nonzero)
!! CH = low eight bits of cylinder number
!! CL = sector number 1-63 (bits 0-5)
!! high two bits of cylinder (bits 6-7, hard disk only)
!! DH = head number
!! DL = drive number (bit 7 set for hard disk)
!! ES:BX ->; data buffer
!! Return: CF set on error
!! if AH = 11h (corrected ECC error), AL = burst length
!! CF clear if successful
!! AH = status (see #00234)
!! AL = number of sectors transferred (only valid if CF set for some
!! BIOSes)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


ok_load_setup:

! 取得磁盘驱动器参数,特别是每磁道扇区数(nr of sectors/track);

#if 0

! bde - Phoenix BIOS手册中提到功能0x08只对硬盘起作用。
! 但它对于我的一个BIOS(1987 Award)不起作用。
! 不检查错误码是致命的错误。

xor dl,dl
mov ah,#0x08 ! AH=8用于取得驱动器参数;
int 0x13
xor ch,ch

!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! INT 13 - DISK - GET DRIVE PARAMETERS (PC,XT286,CONV,PS,ESDI,SCSI)
!! AH = 08h
!! DL = drive (bit 7 set for hard disk)
!!Return: CF set on error
!! AH = status (07h) (see #00234)
!! CF clear if successful
!! AH = 00h
!! AL = 00h on at least some BIOSes
!! BL = drive type (AT/PS2 floppies only) (see #00242)
!! CH = low eight bits of maximum cylinder number
!! CL = maximum sector number (bits 5-0)
!! high two bits of maximum cylinder number (bits 7-6)
!! DH = maximum head number
!! DL = number of drives
!! ESI ->; drive parameter table (floppies only)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

#else

! 好象没有BIOS调用可取得扇区数。如果扇区36可以读就推测是36个扇区,
! 如果扇区18可读就推测是18个扇区,如果扇区15可读就推测是15个扇区,
! 否则推测是9. [36, 18, 15, 9]

mov si,#disksizes ! ds:si->;要测试扇区数大小的表;

probe_loop:
lodsb !! ds:si所指的字节 =>;al, si=si+1;
cbw ! 扩展为字(word);
mov sectors, ax ! 第一个值是36,最后一个是9;
cmp si,#disksizes+4
jae got_sectors ! 如果所有测试都失败了,就试9;
xchg ax,cx ! cx = 磁道和扇区(第一次是36=0x0024);
xor dx,dx ! 驱动器0,磁头0;
xor bl,bl !! 设置缓冲区es:bx = 0x9000:0x0a00(578.5k);
mov bh,setup_sects !! setup_sects = 4 (共2k);
inc bh
shl bh,#1 ! setup后面的地址(es=cs);
mov ax,#0x0201 ! 功能2(读),1个扇区;
int 0x13
jc probe_loop ! 如果不对,就试用下一个值;

#endif

got_sectors:

! 恢复es

mov ax,#INITSEG
mov es,ax ! es = 0x9000;

! 打印一些无用的信息(换行后,显示Loading)

mov ah,#0x03 ! 读光标位置;
xor bh,bh
int 0x10

mov cx,#9
mov bx,#0x0007 ! 页0,属性7 (normal);
mov bp,#msg1
mov ax,#0x1301 ! 写字符串,移动光标;
int 0x10

! ok, 我们已经显示出了信息,现在
! 我们要加载系统了(到0x10000处)(64k处)

mov ax,#SYSSEG
mov es,ax ! es=0x01000的段;
call read_it !! 读system,es为输入参数;
call kill_motor !! 关闭驱动器马达;
call print_nl !! 打印回车换行;

! 这以后,我们来检查要使用哪个根设备(root-device)。如果已指定了设备(!=0)
! 则不做任何事而使用给定的设备。否则的话,使用/dev/fd0H2880 (2,32)或/dev/PS0
(2,2
! 或者是/dev/at0 (2,之一,这取决于我们假设我们知道的扇区数而定。
!! |__ ps0?? (x,y)--表示主、次设备号?

seg cs
mov ax,root_dev
or ax,ax
jne root_defined
seg cs
mov bx,sectors !! sectors = 每磁道扇区数;
mov ax,#0x0208 ! /dev/ps0 - 1.2Mb;
cmp bx,#15
je root_defined
mov al,#0x1c ! /dev/PS0 - 1.44Mb !! 0x1C = 28;
cmp bx,#18
je root_defined
mov al,0x20 ! /dev/fd0H2880 - 2.88Mb;
cmp bx,#36
je root_defined
mov al,#0 ! /dev/fd0 - autodetect;
root_defined:
seg cs
mov root_dev,ax !! 其中保存由设备的主、次设备号;

! 这以后(所有程序都加载了),我们就跳转至
! 被直接加载到boot块后面的setup程序去:

jmpi 0,SETUPSEG !! 跳转到0x9020:0000(setup程序的开始位置);


! 这段程序将系统(system)加载到0x10000(64k)处,
! 注意不要跨越64kb边界。我们试图以最快的速度
! 来加载,只要可能就整个磁道一起读入。
!
! 输入(in): es - 开始地址段(通常是0x1000)
!
sread: .word 0 ! 当前磁道已读的扇区数;
head: .word 0 ! 当前磁头;
track: .word 0 ! 当前磁道;

read_it:
mov al,setup_sects
inc al
mov sread,al !! 当前sread=5;
mov ax,es !! es=0x1000;
test ax,#0x0fff !! (ax AND 0x0fff, if ax=0x1000 then zero-flag=1 );
die: jne die ! es 必须在64kB的边界;
xor bx,bx ! bx 是段内的开始地址;
rp_read:
#ifdef __BIG_KERNEL__
#define CALL_HIGHLOAD_KLUDGE .word 0x1eff, 0x220 ! 调用 far * bootsect_kludge
! 注意: as86不能汇编这;
CALL_HIGHLOAD_KLUDGE ! 这是在setup.S中的程序;
#else
mov ax,es
sub ax,#SYSSEG ! 当前es段值减system加载时的启始段值(0x1000);
#endif
cmp ax,syssize ! 我们是否已经都加载了?(ax=0x7f00 ?);
jbe ok1_read !! if ax <= syssize then 继续读;
ret !! 全都加载完了,返回!
ok1_read:
mov ax,sectors !! sectors=每磁道扇区数;
sub ax,sread !! 减去当前磁道已读扇区数,al=当前磁道未读的扇区数(ah=0);
mov cx,ax
shl cx,#9 !! 乘512,cx = 当前磁道未读的字节数;
add cx,bx !! 加上段内偏移值,es:bx为当前读入的数据缓冲区地址;
jnc ok2_read !! 如果没有超过64K则继续读;
je ok2_read !! 如果正好64K也继续读;
xor ax,ax
sub ax,bx
shr ax,#9
ok2_read:
call read_track !! es:bx ->;缓冲区,al=要读的扇区数,也即当前磁道未读的扇区数;

mov cx,ax !! ax仍为调用read_track之前的值,即为读入的扇区数;
add ax,sread !! ax = 当前磁道已读的扇区数;
cmp ax,sectors !! 已经读完当前磁道上的扇区了吗?
jne ok3_read !! 没有,则跳转;
mov ax,#1
sub ax,head !! 当前是磁头1吗?
jne ok4_read !! 不是(是磁头0)则跳转(此时ax=1);
inc track !! 当前是磁头1,则读下一磁道(当前磁道加1);
ok4_read:
mov head,ax !! 保存当前磁头号;
xor ax,ax !! 本磁道已读扇区数清零;
ok3_read:
mov sread,ax !! 存本磁道已读扇区数;
shl cx,#9 !! 刚才一次读操作读入的扇区数 * 512;
add bx,cx !! 调整数据缓冲区的起始指针;
jnc rp_read !! 如果该指针没有超过64K的段内最大偏移量,则跳转继续读操作;
mov ax,es !! 如果超过了,则将段地址加0x1000(下一个64K段);
add ah,#0x10
mov es,ax
xor bx,bx !! 缓冲区地址段内偏移量置零;
jmp rp_read !! 继续读操作;


read_track:
pusha !! 将寄存器ax,cx,dx,bx,sp,bp,si,di压入堆栈;
pusha
mov ax,#0xe2e ! loading... message 2e = . !! 显示一个.
mov bx,#7
int 0x10
popa

mov dx,track !! track = 当前磁道;
mov cx,sread
inc cx !! cl = 扇区号,要读的起始扇区;
mov ch,dl !! ch = 磁道号的低8位;
mov dx,head !!
mov dh,dl !! dh = 当前磁头号;
and dx,#0x0100 !! dl = 驱动器号(0);
mov ah,#2 !! 功能2(读),es:bx指向读数据缓冲区;

push dx ! 为出错转储保存寄存器的值到堆栈上;
push cx
push bx
push ax

int 0x13
jc bad_rt !! 如果出错,则跳转;
add sp, #8 !! 清(放弃)堆栈上刚推入的4个寄存器值;
popa
ret

bad_rt: push ax ! 保存出错码;
call print_all ! ah = error, al = read;


xor ah,ah
xor dl,dl
int 0x13


add sp,#10
popa
jmp read_track

/*
* print_all是用于调试的。
* 它将打印出所有寄存器的值。所作的假设是
* 从一个子程序中调用的,并有如下所示的堆栈帧结构
* dx
* cx
* bx
* ax
* error
* ret <- sp
*
*/

print_all:
mov cx,#5 ! 出错码 + 4个寄存器
mov bp,sp

print_loop:
push cx ! 保存剩余的计数值
call print_nl ! 为了增强阅读性,打印换行

cmp cl, #5
jae no_reg ! 看看是否需要寄存器的名称

mov ax,#0xe05 + A - l
sub al,cl
int 0x10

mov al,#X
int 0x10

mov al,#:
int 0x10

no_reg:
add bp,#2 ! 下一个寄存器
call print_hex ! 打印值
pop cx
loop print_loop
ret

print_nl: !! 打印回车换行。
mov ax,#0xe0d ! CR
int 0x10
mov al,#0xa ! LF
int 0x10
ret

/*
* print_hex是用于调试目的的,打印出
* ss:bp所指向的十六进制数。
* !! 例如,十六进制数是0x4321时,则al分别等于4,3,2,1调用中断打印出来 4321
*/

print_hex:
mov cx, #4 ! 4个十六进制数字
mov dx, (bp) ! 将(bp)所指的值放入dx中
print_digit:
rol dx, #4 ! 循环以使低4比特用上 !! 取dx的高4比特移到低4比特处。
mov ax, #0xe0f ! ah = 请求的功能值,al = 半字节(4个比特)掩码。
and al, dl !! 取dl的低4比特值。
add al, #0x90 ! 将al转换为ASCII十六进制码(4个指令)
daa !! 十进制调整
adc al, #0x40 !! (adc dest, src ==>; dest := dest + src + c )
daa
int 0x10
loop print_digit
ret


/*
* 这个过程(子程序)关闭软驱的马达,这样
* 我们进入内核后它的状态就是已知的,以后也就
* 不用担心它了。
*/
kill_motor:
push dx
mov dx,#0x3f2
xor al,al
outb
pop dx
ret

!! 数据区
sectors:
.word 0 !! 当前每磁道扇区数。(36||18||15||9)

disksizes: !! 每磁道扇区数表
.byte 36, 18, 15, 9

msg1:
.byte 13, 10
.ascii "Loading"

.org 497 !! 从boot程序的二进制文件的497字节开始
setup_sects:
.byte SETUPSECS
root_flags:
.word CONFIG_ROOT_RDONLY
syssize:
.word SYSSIZE
swap_dev:
.word SWAP_DEV
ram_size:
.word RAMDISK
vid_mode:
.word SVGA_MODE
root_dev:
.word ROOT_DEV
boot_flag: !! 分区启动标志
.word 0xAA55





[目录]

--------------------------------------------------------------------------------


setup.S

1、按规定得有个头,所以一开始是惯用的JMP;
2、头里边内容很丰富,具体用法走着瞧;
3、自我检测,不知道有什么用,防伪造?防篡改?
4、如果装载程序不对,只好死掉!以下终于走入正题;
5、获取内存容量(使用了三种办法,其中的E820和E801看不明白,int 15倒是老朋友了--应该是上个世纪80年代末认识的了,真佩服十年过去了,情意依旧,不过遇上一些不守规矩的BIOS,不知道还行不行);
6、将键盘重复键的重复率设为最大,灵敏一点?
7、检测硬盘,不懂,放这里干什么?
8、检测MCA总线(不要问我这是什么);
9、检测PS/2鼠标,用int 11,只是不知道为何放这里;
10、检测电源管理BIOS;唉,书到用时方恨少,不懂的太多了,真不好意思;不过也没有关系, 不懂的就别去动它就行了;以下要进入内核了;
11、 在进入保护模式之前,可以调用一个你提供的试模式下的过程,让你最后在看她一眼,当然你要是不提供,那就有个默认的,无非是塞住耳朵闭上眼睛禁止任何中断,包括著名的NMI ;
12、设置保护模式起动后的例程地址, 你可以写自己的例程,但不是代替而是把它加在setup提供的例程的前面(显示一个小鸭子?);
13、如果内核是zImage, 将它移动到0x10000处;
14、如果自己不在0x90000处,则移动到0x90000处;
15、建立idt, gdt表;
16、启动A20;
17、屏住呼吸,屏闭所有中断;
18、启动!movw $1, %ax ; lmsw %ax; 好已经进入保护模式下,马上进行局部调整;
19、jmpi 0x100000, __KERNEL_CS,终于进入内核;
setup.S
A summary of the setup.S code 。The slight differences in the operation of setup.S due to a big kernel is documented here. When the switch to 32 bit protected mode begins the code32_start address is defined as 0x100000 (when loaded) here.
code32_start:

#ifndef __BIG_KERNEL__
.long 0x1000
#else
.long 0x100000
#endif

After setting the keyboard repeat rate to a maximum, calling video.S, storing the video parameters, checking for the hard disks, PS/2 mouse, and APM BIOS the preparation for real mode switch begins.

The interrupts are disabled. Since the loader changed the code32_start address, the code32 varable is updated. This would be used for the jmpi instruction when the setup.S finally jumps to compressed/head.S. In case of a big kernel this is loacted at 0x100000.

seg cs
mov eax, code32_start !modified above by the loader
seg cs
mov code32,eax

!code32 contains the correct address to branch to after setup.S finishes After the above code there is a slight difference in the ways the big and small kernels are dealt. In case of a small kernel the kernel is moved down to segment address 0x100, but a big kernel is not moved. Before decompression, the big kernel stays at 0x100000. The following is the code that does thischeck.test byte ptr loadflags,

#LOADED_HIGH
jz do_move0 ! a normal low loaded zImage is moved
jmp end_move ! skip move

The interrupt and global descriptors are initialized:

lidt idt_48 ! load idt wit 0,0
lgdt gdt_48 ! load gdt with whatever appropriate

After enabling A20 and reprogramming the interrupts, it is ready to set the PE bit:

mov ax,#1
lmsw ax
jmp flush_instr
flush_instr:
xor bx.bx !flag to indicate a boot
! Manual, mixing of 16-bit and 32 bit code
db 0x166,0xea !prefix jmpi-opcode
code32: dd ox1000 !this has been reset in caes of a big kernel, to 0x100000
dw __KERNEL_CS

Finally it prepares the opcode for jumping to compressed/head.S which in the big kernel is at 0x100000. The compressed kernel would start at 0x1000 in case of a small kernel.

compressed/head.S

When setup.S relinquishes control to compressed/head.S at beginning of the compressed kernmel at 0x100000. It checks to see if A20 is really enabled otherwise it loops forever.

Itinitializes eflags, and clears BSS (Block Start by Symbol) creating reserved space for uninitialized static or global variables. Finally it reserves place for the moveparams structure (defined in misc.c) and pushes the current stack pointer on the stack and calls the C function decompress_kernel which takes a struct moveparams * as an argument

subl $16,%esp
pushl %esp
call SYMBOL_NAME(decompress_kernel)
orl ??,??
jnz 3f

Te C function decompress_kernel returns the variable high_loaded which is set to 1 in the function setup_output_buffer_if_we_run_high, which is called in decompressed_kernel if a big kernel was loaded.
When decompressed_kernel returns, it jumps to 3f which moves the move routine.

movl $move_routine_start,%esi ! puts the offset of the start of the source in the source index register
mov $0x1000,?? ! the destination index now contains 0x1000, thus after move, the move routine starts at 0x1000
movl $move_routine_end,??
sub %esi,?? ! ecx register now contains the number of bytes to be moved
! (number of bytes between the labels move_routine_start and move_routine_end)
cld
rep
movsb ! moves the bytes from ds:si to es:di, in each loop it increments si and di, and decrements cx
! the movs instruction moves till ecx is zero

Thus the movsb instruction moves the bytes of the move routine between the labels move_routine_start and move_routine_end. At the end the entire move routine labeled move_routine_start is at 0x1000. The movsb instruction moves bytes from ds:si to es:si.

At the start of the head.S code es,ds,fs,gs were all intialized to __KERNEL_DS, which is defined in /usr/src/linux/include/asm/segment.h as 0x18. This is the offset from the goobal descriptor table gdtwhich was setup in setup.S. The 24th byte is the start of the data segment descriptor, which has the base address = 0. Thus the moe routine is moved and
starts at offset 0x1000 from __KERNEL_DS, the kernel data segment base (which is 0).
The salient features of what is done by the decompress_kernel is discussed in the next section but it is worth noting that the when the decompressed_kernel function is invoked, space was created at the top of the stack to contain the information about the decompressed kernel. The decompressed kernel if big may be in the high buffer and in the low buffer. After the decompressed_kernel function returns, the decompressed kernel has to be moved so that we
have a contiguous decompressed kernel starting from address 0x100000. To move the decompressed kernel, the important parameters needed are the start addresses of the high buffer and low buffer, and the number of bytes in the high and low buffers. This is at the top of the stack when decompressed_kernel returns (the top of the stack was passed as an argument : struct moveparams*, and in the function the fileds of the moveparams struture was adjusted toreflect the state of the decompression.)

/* in compressed/misc.c */
struct moveparams {
uch *low_buffer_start; ! start address of the low buffer
int count; ! number of bytes in the low buffer after decompression is doneuch *high_buffer_start; ! start address of the high buffer
int hcount; ! number of bytes in the high buffer aftre decompression is done
};

Thus when the decompressed_kernel returns, the relevant bytes are popped in the respective registers as shown below. After preparing these registers the decompressed kernel is ready to be moved and the control jumps to the moved move routine at __KERNEL_CS:0x1000. The code for setting the appropriate registers is given below:

popl %esi ! discard the address, has the return value (high_load) most probably
popl %esi ! low_buffer_start
popl ?? ! lcount
popl ?? ! high_buffer_count
popl ?? ! hcount
movl %0x100000,??
cli ! disable interrutps when the decompressed kernel is being moved
ljmp $(__KERNEL_CS), $0x1000 ! jump to the move routine which was moved to low memory, 0x1000

The move_routine_start basically has two parts, first it moves the part of the decompressed kernel in the low buffer, then it moves (if required) the high buffer contents. It should be noted that the ecx has been intialized to the number of bytes in the low end buffer, and the destination index register di has been intialized to 0x100000.
move_routine_start:

rep ! repeat, it stops repeating when ecx == 0
movsb ! the movsb instruction repeats till ecx is 0. In each loop byte is transferred from ds:esi to es:edi! In each loop the edi and the esi are incremented and ecx is decremented
! when the low end buffer has been moved the value of di is not changed and the next pasrt of the code! uses it to transfer the bytes from the high buffer
movl ??,%esi ! esi now has the offset corresponding to the start of the high  buffer
movl ??,?? ! ecx is now intialized to the number of bytes in the high buffer
rep
movsb ! moves all the bytes in the high buffer, and doesn’t move at all if hcount was zero (if it was determined, in! close_output_buffer_if_we_run_high that the high buffer need not be moveddown )
xorl ??,??
mov $0x90000, %esp ! stack pointer is adjusted, most probably to be used by the kernel in the intialization
ljmp $(__KERNEL_CS), $0x100000 ! jump to __KERNEL_CS:0X100000, where the kernel code starts
move_routine_end:At the end of the this the control goes to the kernel code segment.


Linux Assembly code taken from  head.S and setup.S
Comment code added by us




[目录]

--------------------------------------------------------------------------------


head.S

    因为setup.S最后的为一条转跳指令,跳到内核第一条指令并开始执行。指令中指向的是内存中的绝对地址,我们无法依此判断转跳到了head.S。但是我们可以通过Makefile简单的确定head.S位于内核的前端。
在arch/i386 的 Makefile 中定义了
        HEAD := arch/i386/kernel/head.o

而在linux总的Makefile中由这样的语句
    include arch/$(ARCH)/Makefile
说明HEAD定义在该文件中有效

    然后由如下语句:

vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs
$(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o \
  $(ARCHIVES) \
  $(FILESYSTEMS) \
  $(DRIVERS) \
  $(LIBS) -o vmlinux
$(NM) vmlinux | grep -v '\(compiled\)\|\(\.o$$\)\|\( a \)' | sort >; System.map

从这个依赖关系我们可以获得大量的信息

1>;$(HEAD)即head.o的确第一个被连接到核心中

2>;所有内核中支持的文件系统全部编译到$(FILESYSTEMS)即fs/filesystems.a中
  所有内核中支持的网络协议全部编译到net.a中
  所有内核中支持的SCSI驱动全部编译到scsi.a中
  ...................
  原来内核也不过是一堆库文件和目标文件的集合罢了,有兴趣对内核减肥的同学,
  可以好好比较一下看究竟是那个部分占用了空间。

3>;System.map中包含了所有的内核输出的函数,我们在编写内核模块的时候
  可以调用的系统函数大概就这些了。


好了,消除了心中的疑问,我们可以仔细分析head.s了。

Head.S分析

1 首先将ds,es,fs,gs指向系统数据段KERNEL_DS
  KERNEL_DS 在asm/segment.h中定义,表示全局描述符表中
  中的第三项。
  注意:该此时生效的全局描述符表并不是在head.s中定义的
        而仍然是在setup.S中定义的。

2 数据段全部清空。

3 setup_idt为一段子程序,将中断向量表全部指向ignore_int函数
  该函数打印出:unknown interrupt
  当然这样的中断处理函数什么也干不了。

4 察看数据线A20是否有效,否则循环等待。
  地址线A20是x86的历史遗留问题,决定是否能访问1M以上内存。

5 拷贝启动参数到0x5000页的前半页,而将setup.s取出的bios参数
  放到后半页。

6 检查CPU类型
  @#$#%$^*@^?(^%#$%!#!@?谁知道干了什么?

7 初始化页表,只初始化最初几页。

  1>;将swapper_pg_dir(0x2000)和pg0(0x3000)清空
    swapper_pg_dir作为整个系统的页目录

  2>;将pg0作为第一个页表,将其地址赋到swapper_pg_dir的第一个32
    位字中。

  3>;同时将该页表项也赋给swapper_pg_dir的第3072个入口,表示虚拟地址
    0xc0000000也指向pg0。

  4>;将pg0这个页表填满指向内存前4M

  5>;进入分页方式
    注意:以前虽然在在保护模式但没有启用分页。

    --------------------
    |  swapper_pg_dir  |       -----------
    |                  |-------| pg0     |----------内存前4M
    |                  |       -----------
    |                  |
    --------------------
8 装入新的gdt和ldt表。

9 刷新段寄存器ds,es,fs,gs

10 使用系统堆栈,即预留的0x6000页面

11 执行start_kernel函数,这个函数是第一个C编制的
   函数,内核又有了一个新的开始。





[目录]

--------------------------------------------------------------------------------


compressed/misc.c

compressed/misc.c
The differences in decompressing big and small kernels.
http://www.vuse.vanderbilt.edu/~knopfdg/documentation/hw3_part3.htm
The function decompressed_kernel is invoked from head.S and a parameter to the top of the stack is passed to store the results of the decompression namely, the start addresses of the high and the low buffers which contain the decompressed kernel and the numebr of bytes in each buffer (hcount and lcount).
int decompress_kernel(struct moveparams *mv)
{
if (SCREEN_INFO.orig_video_mode == 7) {
vidmem = (char *) 0xb0000;
vidport = 0x3b4;
} else {
vidmem = (char *) 0xb8000;
vidport = 0x3d4;
}
lines = SCREEN_INFO.orig_video_lines;
cols = SCREEN_INFO.orig_video_cols;
if (free_mem_ptr < 0x100000) setup_normal_output_buffer(); // Call if smallkernel
else setup_output_buffer_if_we_run_high(mv); // Call if big kernel
makecrc();
puts("Uncompressing Linux... ";
gunzip();
puts("Ok, booting the kernel.\n";
if (high_loaded) close_output_buffer_if_we_run_high(mv);
return high_loaded;
}

The first place where a distinction is made is when the buffers are to be setup for the decmpression routine gunzip(). Free_mem_ptr, is loaded with the value of the address of the extern variabe end. The variable end marks the end of the compressed kernel. If the free_mem-ptr is less than the 0x100000,then a high buffer has to be setup. Thus the function setup_output_buffer_if_we_run_high is called and the pointer to the top of the moveparams structure is passed so that when the buffers are setup, the start addresses fields are updated in moveparams structure. It is also checked to see if the high buffer needs to be moved down after decompression and this is reflected by the hcount which is 0 if we need not move the high buffer down.

void setup_output_buffer_if_we_run_high(struct moveparams *mv)
{
high_buffer_start = (uch *)(((ulg)&end) HEAP_SIZE);
//the high buffer start address is at the end HEAP_SIZE
#ifdef STANDARD_MEMORY_BIOS_CALL
if (EXT_MEM_K < (3*1024)) error("Less than 4MB of memory.\n";
#else
if ((ALT_MEM_K >; EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) < (3*1024)) error("Less
than 4MB of memory.\n";
#endif
mv->;low_buffer_start = output_data = (char *)LOW_BUFFER_START;
//the low buffer start address is at 0x2000 and it extends till 0x90000.
high_loaded = 1; //high_loaded is set to 1, this is returned by decompressed_kernel
free_mem_end_ptr = (long)high_buffer_start;
// free_mem_end_ptr points to the same address as te high_buffer_start
// the code below finds out if the high buffer needs to be moved after decompression
// if the size if the low buffer is >; the size of the compressed kernel and the HEAP_SIZE
// then the high_buffer_start has to be shifted up so that when the decompression starts it doesn’t
// overwrite the compressed kernel data. Thus when the high_buffer_start islow then it is shifted
// up to exactly match the end of the compressed kernel and the HEAP_SIZE. The hcount filed is
// is set to 0 as the high buffer need not be moved down. Otherwise if the high_buffer_start is too
// high then the hcount is non zero and while closing the buffers the appropriate number of bytes
// in the high buffer is asigned to the filed hcount. Since the start address of the high buffer is
// known the bytes could be moved down
if ( (0x100000 LOW_BUFFER_SIZE) >; ((ulg)high_buffer_start)) {
high_buffer_start = (uch *)(0x100000 LOW_BUFFER_SIZE);
mv->;hcount = 0; /* say: we need not to move high_buffer */
}
else mv->;hcount = -1;
mv->;high_buffer_start = high_buffer_start;
// finally the high_buffer_start field is set to the varaible high_buffer_start
}

After the buffers are set gunzip() is invoked which decompresses the kernel Upon return, bytes_out has the number of bytes in the decompressed kernel.Finally close_output_buffer_if_we_run_high is invoked if high_loaded is non zero:

void close_output_buffer_if_we_run_high(struct moveparams *mv)
{
mv->;lcount = bytes_out;
// if the all of decompressed kernel is in low buffer, lcount = bytes_out
if (bytes_out >; LOW_BUFFER_SIZE) {
// if there is a part of the decompressed kernel in the high buffer, the lcount filed is set to
// the size of the low buffer and the hcount field contains the rest of the bytes
mv->;lcount = LOW_BUFFER_SIZE;
if (mv->;hcount) mv->;hcount = bytes_out - LOW_BUFFER_SIZE;
// if the hcount field is non zero (made in setup_output_buffer_if_we_run_high)
// then the high buffer has to be moved doen and the number of bytes in the high buffer is
// in hcount
}
else mv->;hcount = 0; // all the data is in the high buffer
}
Thus at the end of the the decompressed_kernel function the top of the stack has the addresses of the buffers and their sizes which is popped and the appropriate registers set for the move routine to move the entire kernel. After the move by the move_routine the kernel resides at 0x100000. If a small kernel is being decompressed then the setup_normal_output_buffer() is invoked from decompressed_kernel, which just initializes output_data to 0x100000 where the decompressed kernel would lie. The variable high_load is still 0 as setup_output_buffer_if_we_run_high() is not invoked. Decompression is done starting at address 0x100000. As high_load is 0, when decompressed_kernel returns in head.S, a zero is there in the eax. Thus the control jumps directly to 0x100000. Since the decompressed kernel lies there directly and the move routine need not be called.

Linux code taken from misc.c
Comment code added by us





[目录]

--------------------------------------------------------------------------------


内核解压

概述
----
1) Linux的初始内核映象以gzip压缩文件的格式存放在zImage或bzImage之中, 内核的自举代码将它解压到1M内存开始处. 在内核初始化时, 如果加载了压缩的initrd映象, 内核会将它解压到内存盘中, 这两处解压过程都使用了lib/inflate.c文件.

2) inflate.c是从gzip源程序中分离出来的, 包含了一些对全局数据的直接引用, 在使用时需要直接嵌入到代码中. gzip压缩文件时总是在前32K字节的范围内寻找重复的字符串进行编码, 在解压时需要一个至少为32K字节的解压缓冲区, 它定义为window[WSIZE].inflate.c使用get_byte()读取输入文件, 它被定义成宏来提高效率. 输入缓冲区指针必须定义为inptr, inflate.c中对之有减量操作. inflate.c调用flush_window()来输出window缓冲区中的解压出的字节串, 每次输出长度用outcnt变量表示. 在flush_window()中, 还必须对输出字节串计算CRC并且刷新crc变量.  在调用gunzip()开始解压之前, 调用makecrc()初始化CRC计算表. 最后gunzip()返回0表示解压成功.


3) zImage或bzImage由16位引导代码和32位内核自解压映象两个部分组成. 对于zImage, 内核自解压映象被加载到物理地址0x1000, 内核被解压到1M的部位. 对于bzImage, 内核自解压映象被加载到1M开始的地方, 内核被解压为两个片段, 一个起始于物理地址0x2000-0x90000,另一个起始于高端解压映象之后, 离1M开始处不小于低端片段最大长度的区域. 解压完成后,这两个片段被合并到1M的起始位置.


解压根内存盘映象文件的代码
--------------------------

; drivers/block/rd.c
#ifdef BUILD_CRAMDISK

/*
* gzip declarations
*/

#define OF(args)  args        ; 用于函数原型声明的宏
#ifndef memzero
#define memzero(s, n)     memset ((s), 0, (n))
#endif
typedef unsigned char  uch;        定义inflate.c所使用的3种数据类型
typedef unsigned short ush;
typedef unsigned long  ulg;
#define INBUFSIZ 4096                用户输入缓冲区尺寸
#define WSIZE 0x8000    /* window size--must be a power of two, and */
                                  /*  at least 32K for zip's deflate method */

static uch *inbuf;        用户输入缓冲区,与inflate.c无关
static uch *window;        解压窗口
static unsigned insize;  /* valid bytes in inbuf */
static unsigned inptr;   /* index of next byte to be processed in inbuf */
static unsigned outcnt;  /* bytes in output buffer */
static int exit_code;
static long bytes_out;        总解压输出长度,与inflate.c无关
static struct file *crd_infp, *crd_outfp;

#define get_byte()  (inptr
/* Diagnostic functions (stubbed out) */ 一些调试宏
#define Assert(cond,msg)
#define Trace(x)
#define Tracev(x)
#define Tracevv(x)
#define Tracec(c,x)
#define Tracecv(c,x)

#define STATIC static

static int  fill_inbuf(void);
static void flush_window(void);
static void *malloc(int size);
static void free(void *where);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);

#include "../../lib/inflate.c"

static void __init *malloc(int size)
{
        return kmalloc(size, GFP_KERNEL);
}

static void __init free(void *where)
{
        kfree(where);
}

static void __init gzip_mark(void **ptr)
{
        ; 读取用户一个标记
}

static void __init gzip_release(void **ptr)
{
        ; 归还用户标记
}

/* ===========================================================================
* Fill the input buffer. This is called only when the buffer is empty
* and at least one byte is really needed.
*/

static int __init fill_inbuf(void) 填充输入缓冲区
{
        if (exit_code) return -1;
        insize = crd_infp->;f_op->;read(crd_infp, inbuf, INBUFSIZ,
        if (insize == 0) return -1;
        inptr = 1;
        return inbuf[0];
}

/* ===========================================================================
* Write the output window window[0..outcnt-1] and update crc and bytes_out.
* (Used for the decompressed data only.)
*/

static void __init flush_window(void) 输出window缓冲区中outcnt个字节串
{
    ulg c = crc;         /* temporary variable */
    unsigned n;
    uch *in, ch;

    crd_outfp->;f_op->;write(crd_outfp, window, outcnt,
    in = window;
    for (n = 0; n             ch = *in++;
            c = crc_32_tab[((int)c ^ ch)  0xff] ^ (c >;>; ; 计算输出串的CRC
    }
    crc = c;
    bytes_out += (ulg)outcnt; 刷新总字节数
    outcnt = 0;
}

static void __init error(char *x) 解压出错调用的函数
{
        printk(KERN_ERR "%s", x);
        exit_code = 1;
}


static int __init
crd_load(struct file * fp, struct file *outfp)
{
        int result;

        insize = 0;                /* valid bytes in inbuf */
        inptr = 0;                /* index of next byte to be processed in inbuf */
        outcnt = 0;                /* bytes in output buffer */
        exit_code = 0;
        bytes_out = 0;
        crc = (ulg)0xffffffffL; /* shift register contents */

        crd_infp = fp;
        crd_outfp = outfp;
        inbuf = kmalloc(INBUFSIZ, GFP_KERNEL);
        if (inbuf == 0) {
                printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n";
                return -1;
        }
        window = kmalloc(WSIZE, GFP_KERNEL);
        if (window == 0) {
                printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n";
                kfree(inbuf);
                return -1;
        }
        makecrc();
        result = gunzip();
        kfree(inbuf);
        kfree(window);
        return result;
}

#endif  /* BUILD_CRAMDISK */

32位内核自解压代码
------------------

; arch/i386/boot/compressed/head.S

.text
#include ·
#include
        .globl startup_32        对于zImage该入口地址为0x1000; 对于bzImage为0x101000
startup_32:
        cld
        cli
        movl $(__KERNEL_DS),%eax
        movl %eax,%ds
        movl %eax,%es
        movl %eax,%fs
        movl %eax,%gs

        lss SYMBOL_NAME(stack_start),%esp        # 自解压代码的堆栈为misc.c中定义的16K字节的数组
        xorl %eax,%eax
1:        incl %eax                # check that A20 really IS enabled
        movl %eax,0x000000        # loop forever if it isn't
        cmpl %eax,0x100000
        je 1b

/*
* Initialize eflags.  Some BIOS's leave bits like NT set.  This would
* confuse the debugger if this code is traced.
* XXX - best to initialize before switching to protected mode.
*/
        pushl $0
        popfl
/*
* Clear BSS        清除解压程序的BSS段
*/
        xorl %eax,%eax
        movl $ SYMBOL_NAME(_edata),%edi
        movl $ SYMBOL_NAME(_end),%ecx
        subl %edi,%ecx
        cld
        rep
        stosb
/*
* Do the decompression, and jump to the new kernel..
*/
        subl $16,%esp        # place for structure on the stack
        movl %esp,%eax
        pushl %esi        # real mode pointer as second arg
        pushl %eax        # address of structure as first arg
        call SYMBOL_NAME(decompress_kernel)
        orl  %eax,%eax        # 如果返回非零,则表示为内核解压为低端和高端的两个片断
        jnz  3f
        popl %esi        # discard address
        popl %esi        # real mode pointer
        xorl %ebx,%ebx
        ljmp $(__KERNEL_CS), $0x100000        # 运行start_kernel

/*
* We come here, if we were loaded high.
* We need to move the move-in-place routine down to 0x1000
* and then start it with the buffer addresses in registers,
* which we got from the stack.
*/
3:
        movl $move_routine_start,%esi
        movl $0x1000,%edi
        movl $move_routine_end,%ecx
        subl %esi,%ecx
        addl $3,%ecx
        shrl $2,%ecx        # 按字取整
        cld
        rep
        movsl        # 将内核片断合并代码复制到0x1000区域, 内核的片段起始为0x2000

        popl %esi        # discard the address
        popl %ebx        # real mode pointer
        popl %esi        # low_buffer_start  内核低端片段的起始地址
        popl %ecx        # lcount                  内核低端片段的字节数量
        popl %edx        # high_buffer_start 内核高端片段的起始地址
        popl %eax        # hcount                  内核高端片段的字节数量
        movl $0x100000,%edi                  内核合并的起始地址
        cli                # make sure we don't get interrupted
        ljmp $(__KERNEL_CS), $0x1000 # and jump to the move routine

/*
* Routine (template) for moving the decompressed kernel in place,
* if we were high loaded. This _must_ PIC-code !
*/
move_routine_start:
        movl %ecx,%ebp
        shrl $2,%ecx
        rep
        movsl                        # 按字拷贝第1个片段
        movl %ebp,%ecx
        andl $3,%ecx
        rep
        movsb                        # 传送不完全字
        movl %edx,%esi
        movl %eax,%ecx        # NOTE: rep movsb won't move if %ecx == 0
        addl $3,%ecx
        shrl $2,%ecx        # 按字对齐
        rep
        movsl                        # 按字拷贝第2个片段
        movl %ebx,%esi        # Restore setup pointer
        xorl %ebx,%ebx
        ljmp $(__KERNEL_CS), $0x100000        # 运行start_kernel
move_routine_end:

; arch/i386/boot/compressed/misc.c

/*
* gzip declarations
*/

#define OF(args)  args
#define STATIC static

#undef memset
#undef memcpy
#define memzero(s, n)     memset ((s), 0, (n))


ypedef unsigned char  uch;
typedef unsigned short ush;
typedef unsigned long  ulg;

#define WSIZE 0x8000                /* Window size must be at least 32k, */
                                /* and a power of two */

static uch *inbuf;             /* input buffer */
static uch window[WSIZE];    /* Sliding window buffer */

static unsigned insize = 0;  /* valid bytes in inbuf */
static unsigned inptr = 0;   /* index of next byte to be processed in inbuf */
static unsigned outcnt = 0;  /* bytes in output buffer */

/* gzip flag byte */
#define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
#define COMMENT      0x10 /* bit 4 set: file comment present */
#define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
#define RESERVED     0xC0 /* bit 6,7:   reserved */

#define get_byte()  (inptr
/* Diagnostic functions */
#ifdef DEBUG
#  define Assert(cond,msg) {if(!(cond)) error(msg);}
#  define Trace(x) fprintf x
#  define Tracev(x) {if (verbose) fprintf x ;}
#  define Tracevv(x) {if (verbose>;1) fprintf x ;}
#  define Tracec(c,x) {if (verbose  (c)) fprintf x ;}
#  define Tracecv(c,x) {if (verbose>;1  (c)) fprintf x ;}
#else
#  define Assert(cond,msg)
#  define Trace(x)
#  define Tracev(x)
#  define Tracevv(x)
#  define Tracec(c,x)
#  define Tracecv(c,x)
#endif

static int  fill_inbuf(void);
static void flush_window(void);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);

/*
* This is set up by the setup-routine at boot-time
*/
static unsigned char *real_mode; /* Pointer to real-mode data */

#define EXT_MEM_K   (*(unsigned short *)(real_mode + 0x2))
#ifndef STANDARD_MEMORY_BIOS_CALL
#define ALT_MEM_K   (*(unsigned long *)(real_mode + 0x1e0))
#endif
#define SCREEN_INFO (*(struct screen_info *)(real_mode+0))

extern char input_data[];
extern int input_len;

static long bytes_out = 0;
static uch *output_data;
static unsigned long output_ptr = 0;


static void *malloc(int size);
static void free(void *where);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);

static void puts(const char *);

extern int end;
static long free_mem_ptr = (long)
static long free_mem_end_ptr;

#define INPLACE_MOVE_ROUTINE  0x1000        内核片段合并代码的运行地址
#define LOW_BUFFER_START      0x2000        内核低端解压片段的起始地址
#define LOW_BUFFER_MAX       0x90000        内核低端解压片段的终止地址
#define HEAP_SIZE             0x3000        为解压低码保留的堆的尺寸,堆起始于BSS的结束
static unsigned int low_buffer_end, low_buffer_size;
static int high_loaded =0;
static uch *high_buffer_start /* = (uch *)(((ulg) + HEAP_SIZE)*/;

static char *vidmem = (char *)0xb8000;
static int vidport;
static int lines, cols;

#include "../../../../lib/inflate.c"

static void *malloc(int size)
{
        void *p;

        if (size         if (free_mem_ptr
        free_mem_ptr = (free_mem_ptr + 3)  ~3;        /* Align */

        p = (void *)free_mem_ptr;
        free_mem_ptr += size;

        if (free_mem_ptr >;= free_mem_end_ptr)
                error("\nOut of memory\n";

        return p;
}

static void free(void *where)
{        /* Don't care */
}

static void gzip_mark(void **ptr)
{
        *ptr = (void *) free_mem_ptr;
}

static void gzip_release(void **ptr)
{
        free_mem_ptr = (long) *ptr;
}

static void scroll(void)
{
        int i;

        memcpy ( vidmem, vidmem + cols * 2, ( lines - 1 ) * cols * 2 );
        for ( i = ( lines - 1 ) * cols * 2; i                 vidmem[ i ] = ' ';
}

static void puts(const char *s)
{
        int x,y,pos;
        char c;

        x = SCREEN_INFO.orig_x;
        y = SCREEN_INFO.orig_y;

        while ( ( c = *s++ ) != '\0' ) {
                if ( c == '\n' ) {
                        x = 0;
                        if ( ++y >;= lines ) {
                                scroll();
                                y--;
                        }
                } else {
                        vidmem [ ( x + cols * y ) * 2 ] = c;
                        if ( ++x >;= cols ) {
                                x = 0;
                                if ( ++y >;= lines ) {
                                        scroll();
                                        y--;
                                }
                        }
                }
        }

        SCREEN_INFO.orig_x = x;
        SCREEN_INFO.orig_y = y;

        pos = (x + cols * y) * 2;        /* Update cursor position */
        outb_p(14, vidport);
        outb_p(0xff  (pos >;>; 9), vidport+1);
        outb_p(15, vidport);
        outb_p(0xff  (pos >;>; 1), vidport+1);
}

void* memset(void* s, int c, size_t n)
{
        int i;
        char *ss = (char*)s;

        for (i=0;i        return s;
}

void* memcpy(void* __dest, __const void* __src,
                            size_t __n)
{
        int i;
        char *d = (char *)__dest, *s = (char *)__src;

        for (i=0;i        return __dest;
}

/* ===========================================================================
* Fill the input buffer. This is called only when the buffer is empty
* and at least one byte is really needed.
*/
static int fill_inbuf(void)
{
        if (insize != 0) {
                error("ran out of input data\n";
        }

        inbuf = input_data;
        insize = input_len;
        inptr = 1;
        return inbuf[0];
}

/* ===========================================================================
* Write the output window window[0..outcnt-1] and update crc and bytes_out.
* (Used for the decompressed data only.)
*/
static void flush_window_low(void)
{
    ulg c = crc;         /* temporary variable */
    unsigned n;
    uch *in, *out, ch;
    in = window;
    out =
    for (n = 0; n             ch = *out++ = *in++;
            c = crc_32_tab[((int)c ^ ch)  0xff] ^ (c >;>; ;
    }
    crc = c;
    bytes_out += (ulg)outcnt;
    output_ptr += (ulg)outcnt;
    outcnt = 0;
}

static void flush_window_high(void)
{
    ulg c = crc;         /* temporary variable */
    unsigned n;
    uch *in,  ch;
    in = window;
    for (n = 0; n         ch = *output_data++ = *in++;
        if ((ulg)output_data == low_buffer_end) output_data=high_buffer_start;
        c = crc_32_tab[((int)c ^ ch)  0xff] ^ (c >;>; ;
    }
    crc = c;
    bytes_out += (ulg)outcnt;
    outcnt = 0;
}

static void flush_window(void)
{
        if (high_loaded) flush_window_high();
        else flush_window_low();
}

static void error(char *x)
{
        puts("\n\n";
        puts(x);
        puts("\n\n -- System halted");

        while(1);        /* Halt */
}

#define STACK_SIZE (4096)

long user_stack [STACK_SIZE];

struct {
        long * a;
        short b;
        } stack_start = {  user_stack [STACK_SIZE] , __KERNEL_DS };

void setup_normal_output_buffer(void) 对于zImage, 直接解压到1M
{
#ifdef STANDARD_MEMORY_BIOS_CALL
        if (EXT_MEM_K #else
        if ((ALT_MEM_K >; EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) #endif
        output_data = (char *)0x100000; /* Points to 1M */
        free_mem_end_ptr = (long)real_mode;
}

struct moveparams {
        uch *low_buffer_start;  int lcount;
        uch *high_buffer_start; int hcount;
};

void setup_output_buffer_if_we_run_high(struct moveparams *mv)
{
        high_buffer_start = (uch *)(((ulg) + HEAP_SIZE); 内核高端片段的最小起始地址
#ifdef STANDARD_MEMORY_BIOS_CALL
        if (EXT_MEM_K #else
        if ((ALT_MEM_K >; EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) #endif
        mv->;low_buffer_start = output_data = (char *)LOW_BUFFER_START;
        low_buffer_end = ((unsigned int)real_mode >; LOW_BUFFER_MAX
          ? LOW_BUFFER_MAX : (unsigned int)real_mode)  ~0xfff;
        low_buffer_size = low_buffer_end - LOW_BUFFER_START;
        high_loaded = 1;
        free_mem_end_ptr = (long)high_buffer_start;
        if ( (0x100000 + low_buffer_size) >; ((ulg)high_buffer_start)) {
                ; 如果高端片段的最小起始地址小于它实际应加载的地址,则将它置为实际地址,
                ; 这样高端片段就无需再次移动了,否则它要向前移动
                high_buffer_start = (uch *)(0x100000 + low_buffer_size);
                mv->;hcount = 0; /* say: we need not to move high_buffer */
        }
        else mv->;hcount = -1; 待定

mv->;high_buffer_start = high_buffer_start;
}

void close_output_buffer_if_we_run_high(struct moveparams *mv)
{
        if (bytes_out >; low_buffer_size) {
                mv->;lcount = low_buffer_size;
                if (mv->;hcount)
                        mv->;hcount = bytes_out - low_buffer_size; 求出高端片段的字节数
        } else { 如果解压后内核只有低端的一个片段
                mv->;lcount = bytes_out;
                mv->;hcount = 0;
        }
}

int decompress_kernel(struct moveparams *mv, void *rmode)
{
        real_mode = rmode;

        if (SCREEN_INFO.orig_video_mode == 7) {
                vidmem = (char *) 0xb0000;
                vidport = 0x3b4;
        } else {
                vidmem = (char *) 0xb8000;
                vidport = 0x3d4;
        }

        lines = SCREEN_INFO.orig_video_lines;
        cols = SCREEN_INFO.orig_video_cols;

        if (free_mem_ptr         else setup_output_buffer_if_we_run_high(mv);

        makecrc();
        puts("Uncompressing Linux... ");
        gunzip();
        puts("Ok, booting the kernel.\n");
        if (high_loaded) close_output_buffer_if_we_run_high(mv);
        return high_loaded;
}

Edited by lucian_yao on 04/28/01 01:36 PM.




[目录]

--------------------------------------------------------------------------------


用网卡从并口启动(I386)

标题   用网络卡从并口上启动Linux(I386) [re: raoxianhong]
作者 raoxianhong (journeyman)
时间 10/07/01 12:31 PM
“十一”假期,哪儿也不去,做个程序博各位一笑。
=============================================

1、到底想干什么

   了解Linux的启动过程,制作一个自己的Linux启动程序,可以增加对Linux的了解,还能学习PC机的启动机制,增进对计算机结构的了解,增强对Linux内核学习的信心。也可以在某些专用产品中使用(比如专用的服务器)。为此,我尝试在原来代码的基础上修改制作了一个用网络卡从并口上启动Linux的程序,以博一笑,其中有许多问题值得研究。

2、Linux对启动程序的要求

   Linux(bzImage Kernel)对启动程序的要求比较简单,你只要能够建立一个启动头(setup.S),给出一些信息,然后将kernel/usr/src/linux/arch/i386/boot/compressed/bvmlinux.out)调到绝对地址0x100000(1M地址处),如果有initrd,则将它调到内存高端(离0x100000越远越好,比如如果initrd小于4M,就可以将它调到地址0xB00000,即12M处,相信现在已经很少有少于16M内存的机器了),然后执行一些初始化操作,跳到内核处就行了。

   当然,说起来容易做起来还有点麻烦,以下分几个问题解释。

3、PC机开机流程--启动程序放在何处

   PC机加电后,进入实模式,先进行自检,然后初始化各个总线扩展设备(ISA, EISA,PCI,AGP),
全部初始化做完后,从当前启动设备中读一个块(512字节)到07C0:0000处,将控制转到该处。

   了解这个过程,我们可以决定将启动程序放在何处:

      1)放在启动设备的MBR(主启动记录中),比如磁盘的启动扇区。这是一般的启动方式。

      2)放在总线扩展设备的扩展rom中,比如网卡的boot rom就行,这里制作的启动程序就是放在网卡中,可以支持16K字节。

      3)哪位高手能够修改ROMBIOS,让BIOS在做完初始化后不要马上从启动设备读数据,而是调用一段外面加入的程序(2K字节就够了,当然也必须与修改后的BIOS一起烧在BIOS ROM中),就可以从BIOS启动!

      4)先启动一个操作系统,再在此操作系统中写启动程序(比如lodlin16就是从DOS中启动Linux,好象中软提供了一个从Windows下启动Linux的启动程序)。

4、操作系统放在何处

   操作系统(一般内核在500K-1M之间,加上应用程序可以控制在2M以内,当然都经过压缩了)的数据选择余地就大了,可以从软盘、硬盘、CDROM、网络、磁带机、并口(软件狗上烧个内核和应用程序?)、串口(外接你的设备)、USB设备(?)、PCI扩展卡、IC卡等等上面来读;各位还有什么意见,提醒提醒。有位老兄说实在不行可以用键盘启动,每次启动时把内核敲进去,还有int 16h支持呢,做起来也不难,应该是最节省的方案了。

   反正一个原则是,在启动程序中能够从该设备上读就行了,这里最简单的就是并口了,简单的端口操作,不需要任何驱动程序支持,不需要BIOS支持,比磁盘还简单(磁盘一般使用int 13h,主要是计算柱面啊、磁头啊、磁道啊、扇区啊好麻烦,幸好有现成的源代码,可以学习学习)。

   好了,我们挑个简单的方案,将启动代码(bootsect.S+setup.S)放到网络卡的boot rom中,内核数据和应用数据放到另外一台计算机上,用并口提供。下面谈谈几个相关的问题。

5、将数据移动到绝对地址处
   第一个问题,我们得到数据,因为是在实模式下,所以一般是放在1M地址空间内,怎样将它移动到指定的地方去,在setup.S 的源代码中,使用了int 15h(87h号功能)。这里将该段代码稍加改动,做了些假设,列到下面,流程是:

        if (%cs:move_es==0)/*由于使用前move_es初始化为0,因此这是第一次调用,此时es:bx是要移动的数据
                                存放处bx=0,es低四为位为零表示es:bx在64K边界上,fs的低8位指定目的地地址,
                                也以64K字节为单位,用不着那么精确,以简化操作*/
        {
                将es右移四位,得到64K单位的8位地址(这样一来,最多只能将数据移动到16M以下了),作为源数据
                描述符中24位地址的高8位,低16位为零。
                将fs的低8位作为目的地的描述符中24位地址的高8位,同样,它的低16位为零。
                将es存放在move_es中,es自然不会是零,因此以后再调用该例程时就进行正常的移动操作了。
                ax清零返回。
        }
        else
        {
                if (bx==0)/*bx为零,表示数据已经满64K了,应该进行实际的移动*/
                {
                        调用int15h 87h号功能,进行实际的数据移动(64K, 0x8000个16字节块)。
                        目的地址(24位)高8位增一,往后走64K
                        ax = 1
                        return;
                }
                else
                {
                        ax = 0;
                        return;
                }
        }


# we will move %cx bytes from es:bx to %fs(64Kbytes per unit)
# when we first call movetohigh(%cs:move_es is zero),
# the es:bx and %edx is valid
# we configure the param first
# follow calls will move data actually
# %ax return 0 if no data really moved, and return 1 if there is data
# really to be moved
#
movetohigh:
        cmpw        $0, %cs:move_es
        jnz        move_second

        # at this point , es:bx(bx = 0) is the source address
        # %edx is the destination address

        movb        $0x20, %cs:type_of_loader
        movw        %es, %ax
        shrw        $4, %ax
        movb        %ah, %cs:move_src_base+2
        movw        %fs, %ax
        movb        %al, %cs:move_dst_base+2
        movw        %es, %ax
        movw        %ax, %cs:move_es
        xorw        %ax, %ax
        ret                                        # nothing else to do for now

move_second:
        xorw        %ax, %ax
        testw        %bx, %bx
        jne        move_ex
        pushw        %ds
        pushw        %cx
        pushw        %si
        pushw        %bx

        movw        $0x8000, %cx                        # full 64K, INT15 moves words
        pushw        %cs
        popw        %es
        leaw        %cs:move_gdt, %si
        movw        $0x8700, %ax
        int        $0x15
        jc        move_panic                        # this, if INT15 fails

        movw        %cs:move_es, %es                # we reset %es to always point
        incb        %cs:move_dst_base+2                # to 0x10000
        popw        %bx
        popw        %si
        popw        %cx
        popw        %ds
        movw        $1, %ax
move_ex:
        ret

move_gdt:
        .word        0, 0, 0, 0
        .word        0, 0, 0, 0

move_src:
        .word        0xffff

move_src_base:
        .byte        0x00, 0x00, 0x01                # base = 0x010000
        .byte        0x93                                # typbyte
        .word        0                                # limit16,base24 =0

move_dst:
        .word        0xffff

move_dst_base:
        .byte        0x00, 0x00, 0x10                # base = 0x100000
        .byte        0x93                                # typbyte
        .word        0                                # limit16,base24 =0
        .word        0, 0, 0, 0                        # BIOS CS
        .word        0, 0, 0, 0                        # BIOS DS

move_es:
        .word        0

move_panic:
        pushw        %cs
        popw        %ds
        cld
        leaw        move_panic_mess, %si
        call        prtstr

move_panic_loop:
        jmp        move_panic_loop

move_panic_mess:
        .string        "INT15 refuses to access high mem, giving up."


6、用并口传输数据
   用并口传输数据,可以从/usr/src/linux/driver/net/plip.c中抄一段,我们采用半字节协议,并口线连接参考该文件。字节收发过程如下:

#define PORT_BASE                0x378

#define data_write(b) outportb(PORT_BASE, b)
#define data_read() inportb(PORT_BASE+1)

#define OK                        0
#define TIMEOUT                        1
#define FAIL                        2

int sendbyte(unsigned char data)
{
        unsigned char c0;
        unsigned long cx;

        data_write((data & 0x0f));
        data_write((0x10 | (data & 0x0f)));
        cx = 32767l * 1024l;
        while (1) {
                c0 = data_read();
                if ((c0 & 0x80) == 0)
                        break;
                if (--cx == 0)
                        return TIMEOUT;
        }
        data_write(0x10 | (data >;>; 4));
        data_write((data >;>; 4));
        cx = 32767l * 1024l;
        while (1) {
                c0 = data_read();
                if (c0 & 0x80)
                        break;

论坛徽章:
0
发表于 2003-04-21 13:15 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

中断

    Linux系统中有很多不同的硬件设备。你可以同步使用这些设备,也就是说你可以发出一个请求,然后等待一直到设备完成操作以后再进行其他的工作。但这种方法的效率却非常的低,因为操作系统要花费很多的等待时间。一个更为有效的方法是发出请求以后,操作系统继续其他的工作,等设备完成操作以后,给操作系统发送一个中断,操作系统再继续处理和此设备有关的操作。
    在将多个设备的中断信号送往CPU的中断插脚之前,系统经常使用中断控制器来综合多个设备的中断。这样即可以节约CPU的中断插脚,也可以提高系统设计的灵活性。中断控制器用来控制系统的中断,它包括屏蔽和状态寄存器。设置屏蔽寄存器的各个位可以允许或屏蔽某一个中断,状态寄存器则用来返回系统中正在使用的中断。

    大多数处理器处理中断的过程都相同。当一个设备发出中段请求时,CPU停止正在执行的指令,转而跳到包括中断处理代码或者包括指向中断处理代码的转移指令所在的内存区域。这些代码一般在CPU的中断方式下运行。在此方式下,将不会再有中断发生。但有些CPU的中断有自己的优先权,这样,更高优先权的中断则可以发生。这意味着第一级的中断处理程序必须拥有自己的堆栈,以便在处理更高级别的中断前保存CPU的执行状态。当中断处理完毕以后,CPU将恢复到以前的状态,继续执行中断处理前正在执行的指令。

    中断处理程序十分简单有效,这样,操作系统就不会花太长的时间屏蔽其他的中断。

[设置Softirq]
    cpu_raise_softirq是一个轮训,唤醒ksoftirqd_CPU0内核线程, 进行管理

cpu_raise_softirq
   |__cpu_raise_softirq
   |wakeup_softirqd
      |wake_up_process

    ·cpu_raise_softirq [kernel/softirq.c]
    ·__cpu_raise_softirq [include/linux/interrupt.h]
    ·wakeup_softirq [kernel/softirq.c]
    ·wake_up_process [kernel/sched.c]

[执行Softirq]
   当内核线程ksoftirqd_CPU0被唤醒, 它会执行队列里的工作。当然ksoftirqd_CPU0也是一个死循环:

for (; {
   if (!softirq_pending(cpu))
      schedule();
      __set_current_state(TASK_RUNNING);
   while (softirq_pending(cpu)) {
      do_softirq();
      if (current->;need_resched)
         schedule
   }
   __set_current_state(TASK_INTERRUPTIBLE)
}

    ·ksoftirqd [kernel/softirq.c]


[目录]

--------------------------------------------------------------------------------


软中断

发信人: fist (星仔迷), 信区: SysInternals WWW-POST
标  题: 软中断
发信站: 武汉白云黄鹤站 (Thu Mar 22 14:12:46 2001) , 转信
软中断「一」

一、 引言
    软中断是linux系统原“底半处理”的升级,在原有的基础上发展的新的处理方式,以适应多cpu 、多线程的软中断处理。要了解软中断,我们必须要先了原来底半处理的处理机制。

二、底半处理机制(基于2.0.3版本)

    某些特殊时刻我们并不愿意在核心中执行一些操作。例如中断处理过程中。当中断发生时处理器将停止当前的工作, 操作系统将中断发送到相应的设备驱动上去。由于此时系统中其他程序都不能运行, 所以设备驱动中的中断处理过程不宜过长。有些任务最好稍后执行。Linux底层部分处理机制可以让设备驱动和Linux核心其他部分将这些工作进行排序以延迟执行。
    系统中最多可以有32个不同的底层处理过程;bh_base是指向这些过程入口的指针数组。而bh_active和 bh_mask用来表示那些处理过程已经安装以及那些处于活动状态。如果bh_mask的第N位置位则表示bh_base的 第N个元素包含底层部分处理例程。如果bh_active的第N位置位则表示第N个底层处理过程例程可在调度器认 为合适的时刻调用。这些索引被定义成静态的;定时器底层部分处理例程具有最高优先级(索引值为0), 控制台底层部分处理例程其次(索引值为1)。典型的底层部分处理例程包含与之相连的任务链表。例如 immediate底层部分处理例程通过那些需要被立刻执行的任务的立即任务队列(tq_immediate)来执行。
    --引自David A Rusling的《linux核心》。

三、对2.4.1 软中断处理机制
    下面,我们进入软中断处理部份(softirq.c):
    由softirq.c的代码阅读中,我们可以知道,在系统的初始化过程中(softirq_init()),它使用了两个数组:bh_task_vec[32],softirq_vec[32]。其中,bh_task_vec[32]填入了32个bh_action()的入口地址,但soft_vec[32]中,只有softirq_vec[0],和softirq_vec[3]分别填入了tasklet_action()和tasklet_hi_action()的地址。其余的保留它用。
    当发生软中断时,系统并不急于处理,只是将相应的cpu的中断状态结构中的active 的相应的位置位,并将相应的处理函数挂到相应的队列,然后等待调度时机来临(如:schedule(),
    系统调用返回异常时,硬中断处理结束时等),系统调用do_softirq()来测试active位,再调用被激活的进程在这处过程中,软中断的处理与底半处理有了差别,active 和mask不再对应bh_base[nr], 而是对应softirq_vec[32]。在softirq.c中,我们只涉及了softirq_vec[0]、softirq_vec[3]。这两者分别调用了tasklet_action()和tasklet_hi_action()来进行后续处理。这两个过程比较相似,大致如下:

1 锁cpu的tasklet_vec[cpu]链表,取出链表,将原链表清空,解锁,还给系统。
2 对链表进行逐个处理。
3 有无法处理的,(task_trylock(t)失败,可能有别的进程锁定),插回系统链表。至此,系统完成了一次软中断的处理。

接下来有两个问题:
1 bh_base[]依然存在,但应在何处调用?
2 tasklet_vec[cpu]队列是何时挂上的?


四、再探讨
    再次考查softirq.c 的bh_action()部份,发现有两个判断:
    A:if(!spin_trylock(&global_bh_lock))goto:rescue 指明如果global_bh_lock 不能被锁上(已被其它进程锁上),则转而执行rescue,将bh_base[nr]挂至tasklet_hi_vec[cpu]队列中。等候中断调度。
    B:if(!hardirq_trylock(cpu)) goto tescue unlock 此时有硬中断发生,放入队列推迟执行。若为空闲,现在执行。

    由此可见,这部分正是对应底半处理的程序,bh_base[]的延时处理正是底半处理的特点,可以推测,如果没有其它函数往tasklet_hi_vec[cpu]队列挂入,那tasklet_hi_vec[cpu]正完全对应着bh_base[]底半处理
    在bh_action()中,把bh_ation()挂入tasklet_hi_vec[cpu]的正是mark_bh(),在整个源码树中查找,发现调用mark_bh()的函数很多,可以理解,软中断产生之时,相关的函数会调用mark_bh(),将bh_action挂上tasklet_hi_vec队列,而bh_action()的作用不过是在发现bh_base[nr]暂时无法处理时重返队列的方法。
    由此可推测tasklet_vec队列的挂接应与此相似,查看interrupt.h,找到tasklet_schedule()函数:

157 static inline void tasklet_schedule(struct tasklet_struct *t)
158 {
159 if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {
160 int cpu = smp_processor_id();
161 unsigned long flags;
162
163 local_irq_save(flags);
164 t->;next = tasklet_vec[cpu].list;
165 tasklet_vec[cpu].list = t; /*插入队列。
166 __cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
167 local_irq_restore(flags);
168 }
169 }

    正是它为tasklet_vec[cpu]队列的建立立下了汗马功劳,在源码树中,它亦被多个模块调用,来完成它的使命。
    至此,我们可以描绘一幅完整的软中断处理图了。
    现在,再来考查do_softirq()的softirq_vec[32],在interrupt.h中有如下定义:

56 enum
57 {
58 HI_SOFTIRQ=0,
59 NET_TX_SOFTIRQ,
60 NET_RX_SOFTIRQ,
61 TASKLET_SOFTIRQ
62 };

    这四个变量应都是为softirq_vec[]的下标,那么,do_softirq()也将会处理NET_TX_SOFTIRQ和NET_RX_SOFTIRQ,是否还处理其它中断,这有待探讨。也许,这个do_softirq()有着极大的拓展性,等着我们去开发呢。

    主要通过__cpu_raise_softirq来设置
    在hi_tasklet(也就是一般用于bh的)的处理里面,在处理完当前的队列后,会将补充的队列重新挂上,然后标记(不管是否补充队列里面有tasklet):

local_irq_disable();
t->;next = tasklet_hi_vec[cpu].list;
tasklet_hi_vec[cpu].list = t;
__cpu_raise_softirq(cpu, HI_SOFTIRQ);
local_irq_enable();

    因此,对mark_bh根本不用设置这个active位。对于一般的tasklet也一样:

local_irq_disable();
t->;next = tasklet_vec[cpu].list;
tasklet_vec[cpu].list = t;
__cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
local_irq_enable();

    其它的设置,可以检索上面的__cpu_raise_softirq

bottom half, softirq, tasklet, tqueue
[bottom half]
bh_base[32]
|
\/
bh_action();
|
\/
bh_task_vec[32];
| mark_bh(), tasklet_hi_schedule()
\/
task_hi_action

bh_base对应的是32个函数,这些函数在bh_action()中调用
static void bh_action(unsigned long nr)
{
int cpu = smp_processor_id();

if (!spin_trylock(&global_bh_lock))
goto resched;

if (!hardirq_trylock(cpu))
goto resched_unlock;

if (bh_base[nr])
bh_base[nr]();

hardirq_endlock(cpu);
spin_unlock(&global_bh_lock);
return;

resched_unlock:
spin_unlock(&global_bh_lock);
resched:
mark_bh(nr);
}

    在软中断初始化时,将bh_action()放到bh_task_vec[32]中,bh_task_vec[32]中元素的类型是tasklet_struct,系统使用mark_bh()或task_hi_schedule()函数将它挂到task_hi_vec[]的对列中,在系统调用do_softirq()时执行。

static inline void mark_bh(int nr)
{
tasklet_hi_schedule(bh_task_vec+nr);
}

static inline void tasklet_hi_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {
int cpu = smp_processor_id();
unsigned long flags;

local_irq_save(flags);
t->;next = tasklet_hi_vec[cpu].list;
tasklet_hi_vec[cpu].list = t;
__cpu_raise_softirq(cpu, HI_SOFTIRQ);
local_irq_restore(flags);
}
}

[softirq]
softirq_vec[32];
struct softirq_action
{
void (*action)(struct softirq_action *);
void *data;
};

    软中断对应一个softirq_action的结构,在do_softirq()中调用相应的action()做处理。
    软中断初始化时只设置了0,3两项,对应的action是task_hi_action和task_action.

1: task_hi_action
/\
|
tasklet_hi_vec[NR_CPU]

struct tasklet_head tasklet_hi_vec[NR_CPUS] __cacheline_aligned;
struct tasklet_head
{
struct tasklet_struct *list;
} __attribute__ ((__aligned__(SMP_CACHE_BYTES)));

    task_hi_action处理的对象是一个tasklet的队列,每个cpu都有一个对应的tasklet队列,
    它在tasklet_hi_schedule中动态添加。

3: task_action
/\
|
tasklet_vec[NR_CPU]

[tasklet]
struct tasklet_struct
{

struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long);
unsigned long data;
};
从上面的分析来看tasklet只是一个调用实体,在do_softirq()中被调用。softirq的组织和结构才是最重要的。




[目录]

--------------------------------------------------------------------------------


硬中断

标题   Linux设备驱动程序的中断
作者 coly (journeyman)
时间 07/02/01 11:24 AM
Linux设备驱动程序的中断 Coly V0.1
指定参考书:《Linux设备驱动程序》(第一版)

这里总结一下Linux设备驱动程序中涉及的中断机制。

一、前言
    Linux的中断宏观分为两种:软中断和硬中断。声明一下,这里的软和硬的意思是指和软件相关以及和硬件相关,而不是软件实现的中断或硬件实现的中断。软中断就是“信号机制”。软中断不是软件中断。Linux通过信号来产生对进程的各种中断操作,我们现在知道的信号共有31个,其具体内容这里略过,感兴趣读者可参看相关参考文献[1]。

    一般来说,软中断是由内核机制的触发事件引起的(例如进程运行超时),但是不可忽视有大量的软中断也是由于和硬件有关的中断引起的,例如当打印机端口产生一个硬件中断时,会通知和硬件相关的硬中断,硬中断就会产生一个软中断并送到操作系统内核里,这样内核就会根据这个软中断唤醒睡眠在打印机任务队列中的处理进程。

    硬中断就是通常意义上的“中断处理程序”,它是直接处理由硬件发过来的中断信号的。当硬中断收到它应当处理的中断信号以后,就回去自己驱动的设备上去看看设备的状态寄存器以了解发生了什么事情,并进行相应的操作。

    对于软中断,我们不做讨论,那是进程调度里要考虑的事情。由于我们讨论的是设备驱动程序的中断问题,所以焦点集中在硬中断里。我们这里讨论的是硬中断,即和硬件相关的中断。

二、中断产生
    要中断,是因为外设需要通知操作系统她那里发生了一些事情,但是中断的功能仅仅是一个设备报警灯,当灯亮的时候中断处理程序只知道有事情发生了,但发生了什么事情还要亲自到设备那里去看才行。也就是说,当中断处理程序得知设备发生了一个中断的时候,它并不知道设备发生了什么事情,只有当它访问了设备上的一些状态寄存器以后,才能知道具体发生了什么,要怎么去处理。

    设备通过中断线向中断控制器发送高电平告诉操作系统它产生了一个中断,而操作系统会从中断控制器的状态位知道是哪条中断线上产生了中断。PC机上使用的中断控制器是8259,这种控制器每一个可以管理8条中断线,当两个8259级联的时候共可以控制15条中断线。这里的中断线是实实在在的电路,他们通过硬件接口连接到CPU外的设备控制器上。

三、IRQ
    并不是每个设备都可以向中断线上发中断信号的,只有对某一条确定的中断线勇有了控制权,才可以向这条中断线上发送信号。由于计算机的外部设备越来越多,所以15条中断线已经不够用了,中断线是非常宝贵的资源。要使用中断线,就得进行中断线的申请,就是IRQ(Interrupt Requirement),我们也常把申请一条中断线成为申请一个IRQ或者是申请一个中断号。

    IRQ是非常宝贵的,所以我们建议只有当设备需要中断的时候才申请占用一个IRQ,或者是在申请IRQ时采用共享中断的方式,这样可以让更多的设备使用中断。无论对IRQ的使用方式是独占还是共享,申请IRQ的过程都是一样的,分为3步:

1.将所有的中断线探测一遍,看看哪些中断还没有被占用。从这些还没有被占用的中断中选一个作为该设备的IRQ。
2.通过中断申请函数申请选定的IRQ,这是要指定申请的方式是独占还是共享。
3.根据中断申请函数的返回值决定怎么做:如果成功了万事大吉,如果没成功则或者重新申请或者放弃申请并返回错误。

    申请IRQ的过程,在参考书的配的源代码里有详细的描述,读者可以通过仔细阅读源代码中的short一例对中断号申请由深刻的理解。

四、中断处理程序
    Linux中的中断处理程序很有特色,它的一个中断处理程序分为两个部分:上半部(top half)和下半部(bottom half)。之所以会有上半部和下半部之分,完全是考虑到中断处理的效率。

    上半部的功能是“登记中断”。当一个中断发生时,他就把设备驱动程序中中断例程的下半部挂到该设备的下半部执行队列中去,然后就没事情了--等待新的中断的到来。这样一来,上半部执行的速度就会很快,他就可以接受更多她负责的设备产生的中断了。上半部之所以要快,是因为它是完全屏蔽中断的,如果她不执行完,其它的中断就不能被及时的处理,只能等到这个中断处理程序执行完毕以后。所以,要尽可能多得对设备产生的中断进行服务和处理,中断处理程序就一定要快。

    但是,有些中断事件的处理是比较复杂的,所以中断处理程序必须多花一点时间才能够把事情做完。可怎么样化解在短时间内完成复杂处理的矛盾呢,这时候Linux引入了下半部的概念。下半部和上半部最大的不同是下半部是可中断的,而上半部是不可中断的。下半部几乎做了中断处理程序所有的事情,因为上半部只是将下半部排到了他们所负责的设备的中断处理队列中去,然后就什么都不管了。下半部一般所负责的工作是察看设备以获得产生中断的事件信息,并根据这些信息(一般通过读设备上的寄存器得来)进行相应的处理。如果有些时间下半部不知道怎么去做,他就使用著名的鸵鸟算法来解决问题--说白了就是忽略这个事件。

    由于下半部是可中断的,所以在它运行期间,如果其它的设备产生了中断,这个下半部可以暂时的中断掉,等到那个设备的上半部运行完了,再回头来运行它。但是有一点一定要注意,那就是如果一个设备中断处理程序正在运行,无论她是运行上半部还是运行下半部,只要中断处理程序还没有处理完毕,在这期间设备产生的新的中断都将被忽略掉。因为中断处理程序是不可重入的,同一个中断处理程序是不能并行的。

    在Linux Kernel 2.0以前,中断分为快中断和慢中断(伪中断我们这里不谈),其中快中断的下半部也是不可中断的,这样可以保证它执行的快一点。但是由于现在硬件水平不断上升,快中断和慢中断的运行速度已经没有什么差别了,所以为了提高中断例程事务处理的效率,从Linux kernel 2.0以后,中断处理程序全部都是慢中断的形式了--他们的下半部是可以被中断的。

    但是,在下半部中,你也可以进行中断屏蔽--如果某一段代码不能被中断的话。你可以使用cti、sti或者是save_flag、restore_flag来实现你的想法。至于他们的用法和区别,请参看本文指定参考书中断处理部分。
进一步的细节请读者参看本文指定参考书,这里就不再所说了,详细介绍细节不是我的目的,我的目的是整理概念。

五、置中断标志位
    在处理中断的时候,中断控制器会屏蔽掉原先发送中断的那个设备,直到她发送的上一个中断被处理完了为止。因此如果发送中断的那个设备载中断处理期间又发送了一个中断,那么这个中断就被永远的丢失了。

    之所以发生这种事情,是因为中断控制器并不能缓冲中断信息,所以当前一个中断没有处理完以前又有新的中断到达,他肯定会丢掉新的中断的。但是这种缺陷可以通过设置主处理器(CPU)上的“置中断标志位”(sti)来解决,因为主处理器具有缓冲中断的功能。如果使用了“置中断标志位”,那么在处理完中断以后使用sti函数就可以使先前被屏蔽的中断得到服务。

六、中断处理程序的不可重入性
    上一节中我们提到有时候需要屏蔽中断,可是为什么要将这个中断屏蔽掉呢?这并不是因为技术上实现不了同一中断例程的并行,而是出于管理上的考虑。之所以在中断处理的过程中要屏蔽同一IRQ来的新中断,是因为中断处理程序是不可重入的,所以不能并行执行同一个中断处理程序。在这里我们举一个例子,从这里子例中可以看出如果一个中断处理程序是可以并行的话,那么很有可能会发生驱动程序锁死的情况。当驱动程序锁死的时候,你的操作系统并不一定会崩溃,但是锁死的驱动程序所支持的那个设备是不能再使用了--设备驱动程序死了,设备也就死了。

    A是一段代码,B是操作设备寄存器R1的代码,C是操作设备寄存器R2的代码。其中激发PS1的事件会使A1产生一个中断,然后B1去读R1中已有的数据,然后代码C1向R2中写数据。而激发PS2的事件会使A2产生一个中断,然后B2删除R1中的数据,然后C2读去R2中的数据。

    如果PS1先产生,且当他执行到A1和B1之间的时候,如果PS2产生了,这是A2会产生一个中断,将PS2中断掉(挂到任务队列的尾部),然后删除了R1的内容。当PS2运行到C2时,由于C1还没有向R2中写数据,所以C2将会在这里被挂起,PS2就睡眠在代码C2上,直到有数据可读的时候被信号唤醒。这是由于PS1中的B2原先要读的R1中的数据被PS2中的B2删除了,所以PS1页会睡眠在B1上,直到有数据可读的时候被信号唤醒。这样一来,唤醒PS1和PS2的事件就永远不会发生了,因此PS1和PS2之间就锁死了。

    由于设备驱动程序要和设备的寄存器打交道,所以很难写出可以重入的代码来,因为设备寄存器就是全局变量。因此,最简洁的办法就是禁止同一设备的中断处理程序并行,即设备的中断处理程序是不可重入的。

    有一点一定要清楚:在2.0版本以后的Linux kernel中,所有的上半部都是不可中断的(上半部的操作是原子性的);不同设备的下半部可以互相中断,但一个特定的下半部不能被它自己所中断(即同一个下半部不能并)。

    由于中断处理程序要求不可重入,所以程序员也不必为编写可重入的代码而头痛了。以我的经验,编写可重入的设备驱动程序是可以的,编写可重入的中断处理程序是非常难得,几乎不可能。

七、避免竞争条件的出现
    我们都知道,一旦竞争条件出现了,就有可能会发生死锁的情况,严重时可能会将整个系统锁死。所以一定要避免竞争条件的出现。这里我不多说,大家只要注意一点:绝大多数由于中断产生的竞争条件,都是在带有中断的
内核进程被睡眠造成的。所以在实现中断的时候,一定要相信谨慎的让进程睡眠,必要的时候可以使用cli、sti或者save_flag、restore_flag。具体细节请参看本文指定参考书。

八、实现
    如何实现驱动程序的中断例程,是各位读者的事情了。只要你们仔细的阅读short例程的源代码,搞清楚编写驱动程序中断例程的规则,就可以编写自己的中断例程了。只要概念正确,

    在正确的规则下编写你的代码,那就是符合道理的东西。我始终强调,概念是第一位的,能编多少代码是很其次的,我们一定要概念正确,才能进行正确的思考。

九、小结
    本文介绍了Linux驱动程序中的中断,如果读者已经新痒了的话,那么打开机器开始动手吧!

Time for you to leave!

参考文献:
1.Linux网络编程
2.编程之道
3.Linux设备驱动程序
4.Mouse drivers
5.Linux Kernel Hacking Guide
6.Unreliable Guide To Hacking The Linux Kernel




[目录]

--------------------------------------------------------------------------------


定时器代码分析

时钟和定时器中断
IRQ 0 [Timer]
|
\|/
|IRQ0x00_interrupt        //   wrapper IRQ handler
   |SAVE_ALL              ---
      |do_IRQ                |   wrapper routines
         |handle_IRQ_event  ---
            |handler() ->; timer_interrupt  // registered IRQ 0 handler
               |do_timer_interrupt
                  |do_timer
                     |jiffies++;
                     |update_process_times
                     |if (--counter <= 0) { // if time slice ended then
                        |counter = 0;        //   reset counter
                        |need_resched = 1;   //   prepare to reschedule
                     |}
         |do_softirq
         |while (need_resched) { // if necessary
            |schedule             //   reschedule
            |handle_softirq
         |}
   |RESTORE_ALL

·IRQ0x00_interrupt, SAVE_ALL [include/asm/hw_irq.h]
·do_IRQ, handle_IRQ_event [arch/i386/kernel/irq.c]
·timer_interrupt, do_timer_interrupt [arch/i386/kernel/time.c]
·do_timer, update_process_times [kernel/timer.c]
·do_softirq [kernel/soft_irq.c]
·RESTORE_ALL, while loop [arch/i386/kernel/entry.S]

    系统启动核心时,调用start_kernal()继续各方面的初始化,在这之前,各种中断都被禁止,只有在完成必要的初始化后,直到执行完Kmalloc_init()后,才允许中断(init\main.c)。与时钟中断有关的部分初始化如下:

    调用trap_init()设置各种trap入口,如system_call、GDT entry、LDT entry、call gate等。其中0~17为各种错误入口,18~47保留。

    调用init_IRQ()函数设置核心系统的时钟周期为10ms,即100HZ,它是以后按照轮转法进行CPU调度时所依照的基准时钟周期。每10ms产生的时钟中断信号直接输入到第一块8259A的INT 0(即irq0)。初始化中断矢量表中从0x20起的17个中断矢量,用bad_IRQ#_interrupt函数的地址(#为中断号)填写。

    调用sched_init()函数,设置启动第一个进程init_task。设置用于管理bottom_half机制的数据结构bh_base[],规定三类事件的中断处理函数,即时钟TIMER_BH、设备TQUEUE_BH和IMMEDIATE_BH。

    调用time_init()函数,首先读取当时的CMOS时间,最后调用setup_x86_irq(0,&irq0)函数,把irq0挂到irq_action[0]队列的后面,并把中断矢量表中第0x20项,即timer中断对应的中断矢量改为IRQ0_interrupt函数的地址,在irq0中,指定时间中断服务程序是timer_interrupt,
     static struct irqaction irq0  = { timer_interrupt, 0, 0, "timer", NULL, NULL}
    结构irqaction的定义如下:
        struct irqaction {
            void (*handler)(int, void *, struct pt_regs *);  /* 中断服务函数入口 */
            unsigned long flags;                      /* 服务允中与否标记 */
        unsigned long mask;
            const char *name;
            void *dev_id;
          struct irqaction *next;
    };
    其中,若flag==SA_INTERRUPT,则中断矢量改为fast_IRQ#_interrupt,在执行中断服务的过程中不允许出现中断,若为其它标记,则中断矢量为IRQ#_interrupt,在执行中断服务的过程中,允许出现中断。
Irq_action的定义与初始化如下:
    static void (*interrupt[17])(void) = {IRQ#_interrupt};
            static void (*fast_interrupt[16])(void) = {fast_IRQ#_interrupt};
    static void (*bad_interrupt[16])(void) = {bad_IRQ#_interrupt};(以上#为中断号)
    static struct irqaction *irq_action[16] = {
            NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL
    };

    irq_action是一个全局数组,每个元素指向一个irq队列,共16个irq队列,时钟中断请求队列在第一个队列,即irq_action[0]。当每个中断请求到来时,都调用setup_x86_irq把该请求挂到相应的队列的后面。

    以后,系统每10ms产生一次时钟中断信号,该信号直接输入到第一块8259A的INT 0(即irq0)。CPU根据中断矢量表和中断源,找到中断矢量函数入口IRQ0_interrupt(程序运行过程中允许中断)或者fast_IRQ0_interrupt(程序运行过程中不允许中断)或者bad_IRQ0_interrupt(不执行任何动作,直接返回),这些函数由宏BUILD_TIMER_IRQ(chip, nr, mask)展开定义。
宏BUILD_TIMER_IRQ(chip, nr, mask)的定义如下:
#define BUILD_TIMER_IRQ(chip,nr,mask) \
asmlinkage void IRQ_NAME(nr); \
asmlinkage void FAST_IRQ_NAME(nr); \
asmlinkage void BAD_IRQ_NAME(nr); \
__asm__( \
"\n"__ALIGN_STR"\n" \
SYMBOL_NAME_STR(fast_IRQ) #nr "_interrupt:\n\t" \
SYMBOL_NAME_STR(bad_IRQ) #nr "_interrupt:\n\t" \
SYMBOL_NAME_STR(IRQ) #nr "_interrupt:\n\t" \
        "pushl $-"#nr"-2\n\t" \
        SAVE_ALL \
        ENTER_KERNEL \
        ACK_##chip(mask,(nr&7)) \
        "incl "SYMBOL_NAME_STR(intr_count)"\n\t"\  /* intr_count为进入临界区的同步信号量 */
        "movl %esp,%ebx\n\t" \
        "pushl %ebx\n\t" \
        "pushl $" #nr "\n\t" \                                                /* 把do_irq函数参数压进堆栈 */
        "call "SYMBOL_NAME_STR(do_IRQ)"\n\t" \
        "addl $8,%esp\n\t" \
        "cli\n\t" \
        UNBLK_##chip(mask) \
        "decl "SYMBOL_NAME_STR(intr_count)"\n\t" \
        "incl "SYMBOL_NAME_STR(syscall_count)"\n\t" \
        "jmp ret_from_sys_call\n";

    其中nr为中断请求类型,取值0~15。在irq.c中通过语句BUILD_TIMER_IRQ(first, 0, 0x01)调用该宏,在执行宏的过程中处理时钟中断响应程序do_irq()。

    函数do_irq()的第一个参数是中断请求队列序号,时钟中断请求传进来的该参数是0。于是程序根据参数0找到请求队列irq_action[0],逐个处理该队列上handler所指的时钟中断请求的服务函数。由于已经指定时钟中断请求的服务函数是timer_interrupt,在函数timer_interrupt中,立即调用do_timer()函数。

    函数do_timer()把jiffies和lost_ticks加1,接着就执行mark_bh(TIMER_BH)函数,把bottom_half中时钟队列对应的位置位,表示该队列处于激活状态。在做完这些动作后,程序从函数do_irq()中返回,继续执行以后的汇编代码。于是,程序在执行语句jmp ret_from_sys_call后,跳到指定的位置处继续执行。

代码段jmp ret_from_sys_call及其相关的代码段如下:
        ALIGN
        .globl ret_from_sys_call
ret_from_sys_call:
        cmpl $0,SYMBOL_NAME(intr_count)
        jne 2f
9:        movl SYMBOL_NAME(bh_mask),%eax
        andl SYMBOL_NAME(bh_active),%eax
        jne handle_bottom_half
#ifdef __SMP__
        cmpb $(NO_PROC_ID), SYMBOL_NAME(saved_active_kernel_processor)
        jne 2f
#endif
        movl EFLAGS(%esp),%eax                # check VM86 flag: CS/SS are
        testl $(VM_MASK),%eax                # different then
        jne 1f
        cmpw $(KERNEL_CS),CS(%esp)        # was old code segment supervisor ?
        je 2f
1:        sti
        orl $(IF_MASK),%eax                # these just try to make sure
        andl $~NT_MASK,%eax                # the program doesn't do anything
        movl %eax,EFLAGS(%esp)                # stupid
        cmpl $0,SYMBOL_NAME(need_resched)
        jne reschedule
#ifdef __SMP__
        GET_PROCESSOR_OFFSET(%eax)
        movl SYMBOL_NAME(current_set)(,%eax), %eax
#else
        movl SYMBOL_NAME(current_set),%eax
#endif
        cmpl SYMBOL_NAME(task),%eax        # task[0] cannot have signals
        je 2f
        movl blocked(%eax),%ecx
        movl %ecx,%ebx                        # save blocked in %ebx for signal handling
        notl %ecx
        andl signal(%eax),%ecx
        jne signal_return
2:        RESTORE_ALL

ALIGN
signal_return:
        movl %esp,%ecx
        pushl %ecx
        testl $(VM_MASK),EFLAGS(%ecx)
        jne v86_signal_return
        pushl %ebx
        call SYMBOL_NAME(do_signal)
        popl %ebx
        popl %ebx
        RESTORE_ALL

ALIGN
v86_signal_return:
        call SYMBOL_NAME(save_v86_state)
        movl %eax,%esp
        pushl %eax
        pushl %ebx
        call SYMBOL_NAME(do_signal)
        popl %ebx
        popl %ebx
        RESTORE_ALL

  handle_bottom_half:
incl SYMBOL_NAME(intr_count)
call SYMBOL_NAME(do_bottom_half)
decl SYMBOL_NAME(intr_count)
jmp 9f

ALIGN
reschedule:
pushl $ret_from_sys_call
  jmp SYMBOL_NAME(schedule)    # test

另外,一些与时钟中断及bottom half机制有关的数据结构介绍如下:
#define        HZ        100
unsigned long volatile jiffies=0;
系统每隔10ms自动把它加1,它是核心系统计时的单位。
enum {
        TIMER_BH = 0,
        CONSOLE_BH,
        TQUEUE_BH,
        DIGI_BH,
        SERIAL_BH,
        RISCOM8_BH,
SPECIALIX_BH,
        BAYCOM_BH,
        NET_BH,
        IMMEDIATE_BH,
        KEYBOARD_BH,
        CYCLADES_BH,
        CM206_BH
};
现在只定义了13个bottom half队列,将来可扩充到32个队列。
unsigned long intr_count = 0;
相当于信号量的作用。只有其等于0,才可以do_bottom_half。
int bh_mask_count[32];
用来计算bottom half队列被屏蔽的次数。只有某队列的bh_mask_count数为0,才能enable该队列。
unsigned long bh_active = 0;
bh_active是32位长整数,每一位表示一个bottom half队列,该位置1,表示该队列处于激活状态,随时准备在CPU认为合适的时候执行该队列的服务,置0则相反。
unsigned long bh_mask = 0;
bh_mask也是32位长整数,每一位对应一个bottom half队列,该位置1,表示该队列可用,并把处理函数的入口地址赋给bh_base,置0则相反。
void (*bh_base[32])(void);
bottom half服务函数入口地址数组。定时器处理函数拥有最高的优先级,它的地址存放在bh_base[0],总是最先执行它所指向的函数。

我们注意到,在IRQ#_interrupt和fast_IRQ#_interrupt中断函数处理返回前,都通过语句jmp ret_from_sys_call,跳到系统调用的返回处(见irq.h),如果bottom half队列不为空,则在那里做类似:
           if (bh_active & bh_mask) {
                            intr_count = 1;
                            do_bottom_half();
                            intr_count = 0;
                    }(该判断的汇编代码见Entry.S)
的判断,调用do_bottom_half()函数。
在CPU调度时,通过schedule函数执行上述的判断,再调用do_bottom_half()函数。
总而言之,在下列三种时机:
CPU调度时
系统调用返回前
中断处理返回前
都会作判断调用do_bottom_half函数。Do_bottom_half函数依次扫描32个队列,找出需要服务的队列,执行服务后把对应该队列的bh_active的相应位置0。由于bh_active标志中TIMER_BH对应的bit为1,因而系统根据服务函数入口地址数组bh_base找到函数timer_bh()的入口地址,并马上执行该函数,在函数timer_bh中,调用函数run_timer_list()和函数run_old_timers()函数,定时执行服务。

TVECS结构及其实现
有关TVECS结构的一些数据结构定义如下:

#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

#define SLOW_BUT_DEBUGGING_TIMERS 0

struct timer_vec {
        int index;
        struct timer_list *vec[TVN_SIZE];
};
struct timer_vec_root {
        int index;
        struct timer_list *vec[TVR_SIZE];
};

static struct timer_vec tv5 = { 0 };
static struct timer_vec tv4 = { 0 };
static struct timer_vec tv3 = { 0 };
static struct timer_vec tv2 = { 0 };
static struct timer_vec_root tv1 = { 0 };

static struct timer_vec * const tvecs[] = {
        (struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
};
#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))
static unsigned long timer_jiffies = 0;

TVECS结构是一个元素个数为5的数组,分别指向tv1,tv2,tv3,tv4,tv5的地址。其中,tv1是结构timer_vec_root的变量,它有一个index域和有256个元素的指针数组,该数组的每个元素都是一条类型为timer_list的链表。其余四个元素都是结构timer_vec的变量,它们各有一个index域和64个元素的指针数组,这些数组的每个元素也都是一条链表。

函数internal_add_timer(struct timer_list *timer)

函数代码如下:
static inline void internal_add_timer(struct timer_list *timer)
{
        /*
        * must be cli-ed when calling this
        */
        unsigned long expires = timer->;expires;
        unsigned long idx = expires - timer_jiffies;

        if (idx < TVR_SIZE) {
                int i = expires & TVR_MASK;
                insert_timer(timer, tv1.vec, i);
        } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
                int i = (expires >;>; TVR_BITS) & TVN_MASK;
                insert_timer(timer, tv2.vec, i);
        } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
                int i = (expires >;>; (TVR_BITS + TVN_BITS)) & TVN_MASK;
                insert_timer(timer, tv3.vec, i);
        } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
                int i = (expires >;>; (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
                insert_timer(timer, tv4.vec, i);
        } else if (expires < timer_jiffies) {
                /* can happen if you add a timer with expires == jiffies,
                * or you set a timer to go off in the past
                */
                insert_timer(timer, tv1.vec, tv1.index);
        } else if (idx < 0xffffffffUL) {
                int i = (expires >;>; (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
                insert_timer(timer, tv5.vec, i);
        } else {
                /* Can only get here on architectures with 64-bit jiffies */
                timer->;next = timer->;prev = timer;
        }
}

   expires


在调用该函数之前,必须关中。对该函数的说明如下:
取出要加进TVECS的timer的激发时间(expires),算出expires与timer_jiffies的差值idx,用来决定该插到哪个队列中去。
若idx小于2^8,则取expires的第0位到第7位的值I,把timer加到tv1.vec中第I个链表的第一个表项之前。
若idx小于2^14,则取expires的第8位到第13位的值I,把timer加到tv2.vec中第I个链表的第一个表项之前。
若idx小于2^20,则取expires的第14位到第19位的值I,把timer加到tv3.vec中第I个链表的第一个表项之前。
若idx小于2^26,则取expires的第20位到第25位的值I,把timer加到tv4.vec中第I个链表的第一个表项之前。
若expires小于timer_jiffies,即idx小于0,则表明该timer到期,应该把timer放入tv1.vec中tv1.index指定的链表的第一个表项之前。
若idx小于2^32,则取expires的第26位到第32位的值I,把timer加到tv5.vec中第I个链表的第一个表项之前。
若idx大等于2^32,该情况只有在64位的机器上才有可能发生,在这种情况下,不把timer加入TVECS结构。

函数cascade_timers(struct timer_vec *tv)

该函数只是把tv->;index指定的那条链表上的所有timer调用internal_add_timer()函数进行重新调整,这些timer将放入TVECS结构中比原来位置往前移一级,比如说,tv4上的timer将放到tv3上去,tv2上的timer将放到tv1上。这种前移是由run_timer_list函数里调用cascade_timers函数的时机来保证的。然后把该条链表置空,tv->;index加1,若tv->;index等于64,则重新置为0。

函数run_timer_list()

函数代码如下:
static inline void run_timer_list(void)
{
cli();
while ((long)(jiffies - timer_jiffies) >;= 0) {
        struct timer_list *timer;
        if (!tv1.index) {
                int n = 1;
                do {
                        cascade_timers(tvecs[n]);
                } while (tvecs[n]->;index == 1 && ++n < NOOF_TVECS);
        }
        while ((timer = tv1.vec[tv1.index])) {
                void (*fn)(unsigned long) = timer->;function;
                unsigned long data = timer->;data;
                detach_timer(timer);
                timer->;next = timer->;prev = NULL;
                sti();
                fn(data);
                cli();
        }
        ++timer_jiffies;
        tv1.index = (tv1.index + 1) & TVR_MASK;
}
sti();
}
对run_timer_list函数的说明如下:
关中。
判断jiffies是否大等于timer_jiffies,若不是,goto 8。
判断tv1.index是否为0(即此时系统已经扫描过整个tv1的256个timer_list链表,又回到的第一个链表处,此时需重整TVECS结构),若是,置n为1;若不是,goto 6。
调用cascade_timers()函数把TVECS[n]中由其index指定的那条链表上的timer放到TVECS[n-1]中来。注意:调用cascade_timers()函数后,index已经加1。
判断TVECS[n]->;index是否为1,即原来为0。如果是(表明TVECS[n]上所有都已经扫描一遍,此时需对其后一级的TVECS[++n]调用cascade_timers()进行重整),把n加1,goto 4。
执行tv1.vec上由tv1->;index指定的那条链表上的所有timer的服务函数,并把该timer从链表中移走。在执行服务函数的过程中,允许中断。
timer_jiffies加1,tv1->;index加1,若tv1->;index等于256,则重新置为0,goto 2。
开中,返回。

Linux提供了两种定时器服务。一种早期的由timer_struct等结构描述,由run_old_times函数处理。另一种“新”的服务由timer_list等结构描述,由add_timer、del_timer、cascade_time和run_timer_list等函数处理。
早期的定时器服务利用如下数据结构:
struct timer_struct {
    unsigned long expires;  /*本定时器被唤醒的时刻 */
    void (*fn)(void);       /* 定时器唤醒后的处理函数 */
}
struct timer_struct timer_table[32];  /*最多可同时启用32个定时器 */
unsigned long timer_active;        /* 每位对应一定时器,置1表示启用 */
新的定时器服务依靠链表结构突破了32个的限制,利用如下的数据结构:
struct timer_list {
    struct timer_list *next;
    struct timer_list *prev;
    unsigned long expires;
    unsigned long data;          /* 用来存放当前进程的PCB块的指针,可作为参数传
    void (*function)(unsigned long);  给function */
}


表示上述数据结构的图示如下:


    在这里,顺便简单介绍一下旧的timer机制的运作情况。
    系统在每次调用函数do_bottom_half时,都会调用一次函数run_old_timers()。
函数run_old_timers()
该函数处理的很简单,只不过依次扫描timer_table中的32个定时器,若扫描到的定时器已经到期,并且已经被激活,则执行该timer的服务函数。

间隔定时器itimer
系统为每个进程提供了三个间隔定时器。当其中任意一个定时器到期时,就会发出一个信号给进程,同时,定时器重新开始运作。三种定时器描述如下:
ITIMER_REAL  真实时钟,到期时送出SIGALRM信号。
ITIMER_VIRTUAL  仅在进程运行时的计时,到期时送出SIGVTALRM信号。
ITIMER_PROF  不仅在进程运行时计时,在系统为进程运作而运行时它也计时,与ITIMER_VIRTUAL对比,该定时器通常为那些在用户态和核心态空间运行的应用所花去的时间计时,到期时送出SIGPROF信号。
与itimer有关的数据结构定义如下:
struct timespec {
        long        tv_sec;                /* seconds */
        long        tv_nsec;        /* nanoseconds */
};
struct timeval {
        int        tv_sec;                /* seconds */
        int        tv_usec;        /* microseconds */
};
struct  itimerspec {
        struct  timespec it_interval;    /* timer period */
        struct  timespec it_value;       /* timer expiration */
};
struct        itimerval {
        struct        timeval it_interval;        /* timer interval */
        struct        timeval it_value;        /* current value */
};

这三种定时器在task_struct中定义:
struct task_struct {
    ……
    unsigned long timeout;
    unsigned long it_real_value,it_prof_value,it_virt_value;
    unsigned long it_real_incr,it_prof_incr,it_virt_incr;
    struct timer_list real_timer;
    ……
}
在进程创建时,系统把it_real_fn函数的入口地址赋给real_timer.function。(见sched.h)
我们小组分析了三个系统调用:sys_getitimer,sys_setitimer,sys_alarm。
在这三个系统调用中,需用到以下一些函数:
函数static int _getitimer(int which, struct itimerval *value)
该函数的运行过程大致如下:
根据传进的参数which按三种itimer分别处理:
若是ITIMER_REAL,则设置interval为current进程的it_real_incr,val设置为0;判断current进程的real_timer有否设置并挂入TVECS结构中,若有,设置val为current进程real_timer的expires,并把real_timer重新挂到TVECS结构中,接着把val与当前jiffies作比较,若小等于当前jiffies,则说明该real_timer已经到期,于是重新设置val为当前jiffies的值加1。最后把val减去当前jiffies的值,goto 2。
若是ITIMER_VIRTUAL,则分别设置interval,val的值为current进程的it_virt_incr、it_virt_value,goto 2。
若是ITIMER_PROF,则分别设置interval,val的值为current进程的it_prof_incr、it_prof_value,goto 2。
   (2)调用函数jiffiestotv把val,interval的jiffies值转换为timeval,返回0。
函数 int _setitimer(int which, struct itimerval *value, struct itimerval *ovalue)
该函数的运行过程大致如下:
调用函数tvtojiffies把value中的interval和value转换为jiffies i 和 j。
判断指针ovalue是否为空,若空,goto ;若不空,则把由which指定类型的itimer存入ovalue中,若存放不成功,goto 4;
根据which指定的itimer按三种类型分别处理:
若是ITIMER_REAL,则从TVECS结构中取出current进程的real_timer,并重新设置current进程的it_real_value和it_real_incr为j和i。若j等于0,goto 4;若不等于0,则把当前jiffies的值加上定时器剩余时间j,得到触发时间。若i小于j,则表明I已经溢出,应该重新设为ULONG_MAX。最后把current进程的real_timer的expires设为i,把设置过的real_timer重新加入TVECS结构,goto 4。
若是ITIMER_VIRTUAL,则设置current进程的it-_virt_value和it_virt_incr为j和i。
若是ITIMER_PROF,则设置current进程的it-_prof_value和it_prof_incr为j和i。
   (4)返回0。

函数verify_area(int type, const void *addr, unsigned long size)
该函数的主要功能是对以addr为始址的,长度为size的一块存储区是否有type类型的操作权利。

函数memcpy_tofs(to, from, n)
该函数的主要功能是从以from为始址的存储区中取出长度为n的一块数据放入以to为始址的存储区。

函数memcpy_fromfs(from, to, n)
该函数的主要功能是从以from为始址的存储区中取出长度为n的一块数据放入以to为始址的存储区。

函数memset((char*)&set_buffer, 0, sizeof(set_buffer))
该函数的主要功能是把set_buffer中的内容置为0,在这里,即把it_value和it_interval置为0。

现在,我简单介绍一下这三个系统调用:
系统调用sys_getitimer(int which, struct itimerval *value)

首先,若value为NULL,则返回-EFAULT,说明这是一个bad address。
其次,把which类型的itimer取出放入get_buffer。
再次,若存放成功,再确认对value的写权利。
最后,则把get_buffer中的itimer取出,拷入value。

系统调用sys_setitimer(int which, struct itimerval *value,struct itimerval *ovalue)

首先,判断value是否为NULL,若不是,则确认对value是否有读的权利,并把set_buffer中的数据拷入value;若value为NULL,则把set_buffer中的内容置为0,即把it_value和it_interval置为0。
其次,判断ovalue是否为NULL,若不是,则确认对ovalue是否有写的权利。
再次,调用函数_setitimer设置由which指定类型的itimer。
最后,调用函数memcpy_tofs把get_buffer中的数据拷入ovalue,返回。

系统调用sys_alarm(unsigned int seconds)

该系统调用重新设置进程的real_itimer,若seconds为0,则把原先的alarm定时器删掉。并且设interval为0,故只触发一次,并把旧的real_timer存入oldalarm,并返回oldalarm。




[目录]

--------------------------------------------------------------------------------


from aka


[目录]

--------------------------------------------------------------------------------


硬件中断

硬件中断
硬件中断概述

中断可以用下面的流程来表示:

中断产生源 -->; 中断向量表 (idt) -->; 中断入口 ( 一般简单处理后调用相应的函数) --->;do_IRQ-->; 后续处理(软中断等工作)

具体地说,处理过程如下:

中断信号由外部设备发送到中断芯片(模块)的引脚

中断芯片将引脚的信号转换成数字信号传给CPU,例如8259主芯片引脚0发送的是0x20

CPU接收中断后,到中断向量表IDT中找中断向量

根据存在中断向量中的数值找到向量入口

由向量入口跳转到一个统一的处理函数do_IRQ

在do_IRQ中可能会标注一些软中断,在执行完do_IRQ后执行这些软中断。

下面一一介绍。

8259芯片

本文主要参考周明德《微型计算机系统原理及应用》和billpan的相关帖子

1.中断产生过程

(1)如果IR引脚上有信号,会使中断请求寄存器(Interrupt Request Register,IRR)相应的位置位,比如图中, IR3, IR4, IR5上有信号,那么IRR的3,4,5为1

(2)如果这些IRR中有一个是允许的,也就是没有被屏蔽,那么就会通过INT向CPU发出中断请求信号。屏蔽是由中断屏蔽寄存器(Interrupt Mask Register,IMR)来控制的,比如图中位3被置1,也就是IRR位3的信号被屏蔽了。在图中,还有4,5的信号没有被屏蔽,所以,会向CPU发出请求信号。

(3)如果CPU处于开中断状态,那么在执行指令的最后一个周期,在INTA上做出回应,并且关中断.

(4)8259A收到回应后,将中断服务寄存器(In-Service Register)置位,而将相应的IRR复位:

8259芯片会比较IRR中的中断的优先级,如上图中,由于IMR中位3处于屏蔽状态,所以实际上只是比较IR4,I5,缺省情况下,IR0最高,依次往下,IR7最低(这种优先级可以被设置),所以上图中,ISR被设置为4.

(5)在CPU发出下一个INTA信号时,8259将中断号送到数据线上,从而能被CPU接收到,这里有个问题:比如在上图中,8259获得的是数4,但是CPU需要的是中断号(并不为4),从而可以到idt找相应的向量。所以有一个从ISR的信号到中断号的转换。在Linux的设置中,4对应的中断号是0x24.

(6)如果8259处于自动结束中断(Automatic End of Interrupt AEOI)状态,那么在刚才那个INTA信号结束前,8259的ISR复位(也就是清0),如果不处于这个状态,那么直到CPU发出EOI指令,它才会使得ISR复位。

2.一些相关专题

(1)从8259

在x86单CPU的机器上采用两个8259芯片,主芯片如上图所示,x86模式规定,从8259将它的INT脚与主8259的IR2相连,这样,如果从8259芯片的引脚IR8-IR15上有中断,那么会在INT上产生信号,主8259在IR2上产生了一个硬件信号,当它如上面的步骤处理后将IR2的中断传送给CPU,收到应答后,会通过CAS通知从8259芯片,从8259芯片将IRQ中断号送到数据线上,从而被CPU接收。

由此,我猜测它产生的所有中断在主8259上优先级为2,不知道对不对。

(2)关于屏蔽

从上面可以看出,屏蔽有两种方法,一种作用于CPU, 通过清除IF标记,使得CPU不去响应8259在INT上的请求。也就是所谓关中断。

另一种方法是,作用于8259,通过给它指令设置IMR,使得相应的IRR不参与ISR(见上面的(4)),被称为禁止(disable),反之,被称为允许(enable).

每次设置IMR只需要对端口0x21(主)或0xA1(从)输出一个字节即可,字节每位对应于IMR每位,例如:

outb(cached_21,0x21);

为了统一处理16个中断,Linux用一个16位cached_irq_mask变量来记录这16个中断的屏蔽情况:

static unsigned int cached_irq_mask = 0xffff;

为了分别对应于主从芯片的8位IMR,将这16位cached_irq_mask分成两个8位的变量:

#define __byte(x,y) (((unsigned char *)&(y))[x])
#define cached_21 (__byte(0,cached_irq_mask))
#define cached_A1 (__byte(1,cached_irq_mask))

在禁用某个irq的时候,调用下面的函数:

void disable_8259A_irq(unsigned int irq){
unsigned int mask = 1 << irq;
unsigned long flags;
spin_lock_irqsave(&i8259A_lock, flags);
cached_irq_mask |= mask;                /*-- 对这16位变量设置 */
if (irq &                             /*-- 看是对主8259设置还是对从芯片设置 */
outb(cached_A1,0xA1);                   /*-- 对从8259芯片设置 */
else
outb(cached_21,0x21);                   /*-- 对主8259芯片设置 */
spin_unlock_irqrestore(&i8259A_lock, flags);
}


(3)关于中断号的输出


8259在ISR里保存的只是irq的ID,但是它告诉CPU的是中断向量ID,比如ISR保存时钟中断的ID 0,但是在通知CPU却是中断号0x20.因此需要建立一个映射。在8259芯片产生的IRQ号必须是连续的,也就是如果irq0对应的是中断向量0x20,那么irq1对应的就是0x21,...

在i8259.c/init_8259A()中,进行设置:

outb_p(0x11, 0x20); /* ICW1: select 8259A-1 init */
outb_p(0x20 + 0, 0x21); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
outb_p(0x04, 0x21); /* 8259A-1 (the master) has a slave on IR2 */
if (auto_eoi)
outb_p(0x03, 0x21); /* master does Auto EOI */
else
outb_p(0x01, 0x21); /* master expects normal EOI */
outb_p(0x11, 0xA0); /* ICW1: select 8259A-2 init */
outb_p(0x20 + 8, 0xA1); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
outb_p(0x02, 0xA1); /* 8259A-2 is a slave on master's IR2 */
outb_p(0x01, 0xA1); /* (slave's support for AEOI in flat mode is to be investigated) */


这样,在IDT的向量0x20-0x2f可以分别填入相应的中断处理函数的地址了。

i386中断门描述符

段选择符和偏移量决定了中断处理函数的入口地址

在这里段选择符指向内核中唯一的一个代码段描述符的地址__KERNEL_CS(=0x10),而这个描述符定义的段为0到4G:

---------------------------------------------------------------------------------

ENTRY(gdt_table) .quad 0x0000000000000000 /* NULL descriptor */
.quad 0x0000000000000000 /* not used */
.quad 0x00cf9a000000ffff /* 0x10 kernel 4GB code at 0x00000000 */
... ...
---------------------------------------------------------------------------------

而偏移量就成了绝对的偏移量了,在IDT的描述符中被拆成了两部分,分别放在头和尾。

P标志着这个代码段是否在内存中,本来是i386提供的类似缺页的机制,在Linux中这个已经不用了,都设成1(当然内核代码是永驻内存的,但即使不在内存,推测linux也只会用缺页的标志)。

DPL在这里是0级(特权级)

0D110中,D为1,表明是32位程序(这个细节见i386开发手册).110是中断门的标识,其它101是任务门的标识, 111是陷阱(trap)门标识。

Linux对中断门的设置

于是在Linux中对硬件中断的中断门的设置为:

init_IRQ(void)
---------------------------------------------------------

for (i = 0; i < NR_IRQS; i++) {
int vector = FIRST_EXTERNAL_VECTOR + i;
if (vector != SYSCALL_VECTOR)
set_intr_gate(vector, interrupt[ i]);
}

----------------------------------------------------------

其中,FIRST_EXTERNAL_VECTOR=0x20,恰好为8259芯片的IR0的中断门(见8259部分),也就是时钟中断的中断门),interrupt[ i]为相应处理函数的入口地址

NR_IRQS=224, =256(IDT的向量总数)-32(CPU保留的中断的个数),在这里设置了所有可设置的向量。

SYSCALL_VECTOR=0x80,在这里意思是避开系统调用这个向量。


而set_intr_gate的定义是这样的:

----------------------------------------------------

void set_intr_gate(unsigned int n, void *addr){
_set_gate(idt_table+n,14,0,addr);
}

----------------------------------------------------

其中,需要解释的是:14是标识指明这个是中断门,注意上面的0D110=01110=14;另外,0指明的是DPL.

中断入口


以8259的16个中断为例:
通过宏BUILD_16_IRQS(0x0), BI(x,y),以及

#define BUILD_IRQ(nr) \
asmlinkage void IRQ_NAME(nr); \
__asm__( \
"\n"__ALIGN_STR"\n" \
SYMBOL_NAME_STR(IRQ) #nr "_interrupt:\n\t" \
"pushl $"#nr"-256\n\t" \
"jmp common_interrupt";

得到的16个中断处理函数为:


IRQ0x00_interrupt:
push $0x00 - 256
jump common_interrupt
IRQ0x00_interrupt:
push $0x01 - 256
jump common_interrupt

... ...


IRQ0x0f_interrupt:
push $0x0f - 256
jump common_interrupt


这些处理函数简单的把中断号-256(为什么-256,也许是避免和内部中断的中断号有冲突)压到栈中,然后跳到common_interrupt


其中common_interrupt是由宏BUILD_COMMON_IRQ()展开:

#define BUILD_COMMON_IRQ() \
asmlinkage void call_do_IRQ(void); \
__asm__( \
"\n" __ALIGN_STR"\n" \
"common_interrupt:\n\t" \
SAVE_ALL \
"pushl $ret_from_intr\n\t" \
SYMBOL_NAME_STR(call_do_IRQ)":\n\t" \
"jmp "SYMBOL_NAME_STR(do_IRQ));
.align 4,0x90common_interrupt:
SAVE_ALL展开的保护现场部分
push $ret_from_intrcall
do_IRQ:
jump do_IRQ;

从上面可以看出,这16个的中断处理函数不过是把中断号-256压入栈中,然后保护现场,最后调用do_IRQ .在common_interrupt中,为了使do_IRQ返回到entry.S的ret_from_intr标号,所以采用的是压入返回点ret_from_intr,用jump来模拟一个从ret_from_intr上面对do_IRQ的一个调用。

和IDT的衔接

为了便于IDT的设置,在数组interrupt中填入所有中断处理函数的地址:

void (*interrupt[NR_IRQS])(void) = {
IRQ0x00_interrupt,
IRQ0x01_interrupt,
... ...
}

在中断门的设置中,可以看到是如何利用这个数组的。
硬件中断处理函数do_IRQ

do_IRQ的相关对象

在do_IRQ中,一个中断主要由三个对象来完成

其中, irq_desc_t对象构成的irq_desc[]数组元素分别对应了224个硬件中断(idt一共256项,cpu自己前保留了32项,256-32=224,当然这里面有些项是不用的,比如x80是系统调用).

当发生中断时,函数do_IRQ就会在irq_desc[]相应的项中提取各种信息来完成对中断的处理。

irq_desc有一个字段handler指向发出这个中断的设备的处理对象hw_irq_controller,比如在单CPU,这个对象一般就是处理芯片8259的对象。为什么要指向这个对象呢?因为当发生中断的时候,内核需要对相应的中断进行一些处理,比如屏蔽这个中断等。这个时候需要对中断设备(比如8259芯片)进行操作,于是可以通过这个指针指向的对象进行操作。

irq_desc还有一个字段action指向对象irqaction,后者是产生中断的设备的处理对象,其中的handler就是处理函数。由于一个中断可以由多个设备发出,Linux内核采用轮询的方式,将所有产生这个中断的设备的处理对象连成一个链表,一个一个执行。

例如,硬盘1,硬盘2都产生中断IRQx,在do_IRQ中首先找到irq_desc[x],通过字段handler对产生中断IRQx的设备进行处理(对8259而言,就是屏蔽以后的中断IRQx),然后通过action先后运行硬盘1和硬盘2的处理函数。


hw_irq_controller
hw_irq_controller有多种:

1.在一般单cpu的机器上,通常采用两个8259芯片,因此hw_irq_controller指的就是i8259A_irq_type

2.在多CPU的机器上,采用APIC子系统来处理芯片,APIC有3个部分组成,一个是I/O APIC模块,其作用可比做8259芯片,但是它发出的中断信号会通过 APIC总线送到其中一个(或几个)CPU中的Local APIC模块,因此,它还起一个路由的作用;它可以接收16个中断。

中断可以采取两种方式,电平触发和边沿触发,相应的,I/O APIC模块的hw_irq_controller就有两种:

ioapic_level_irq_type
ioapic_edge_irq_type

(这里指的是intel的APIC,还有其它公司研制的APIC,我没有研究过)

3. Local APIC自己也能单独处理一些直接对CPU产生的中断,例如时钟中断(这和没有使用Local APIC模块的CPU不同,它们接收的时钟中断来自外围的时钟芯片),因此,它也有自己的 hw_irq_controller:

lapic_irq_type
struct hw_interrupt_type {
const char * typename;
unsigned int (*startup)(unsigned int irq);
void (*shutdown)(unsigned int irq);
void (*enable)(unsigned int irq);
void (*disable)(unsigned int irq);
void (*ack)(unsigned int irq);
void (*end)(unsigned int irq);
void (*set_affinity)(unsigned int irq, unsigned long mask);
};

typedef struct hw_interrupt_type hw_irq_controller;


startup 是启动中断芯片(模块),使得它开始接收中断,一般情况下,就是将 所有被屏蔽的引脚取消屏蔽
shutdown 反之,使得芯片不再接收中断
enable 设某个引脚可以接收中断,也就是取消屏蔽
disable 屏蔽某个引脚,例如,如果屏蔽0那么时钟中断就不再发生
ack 当CPU收到来自中断芯片的中断信号,给相应的引脚的处理,这个各种情况下 (8259, APIC电平,边沿)的处理都不相同
end 在CPU处理完某个引脚产生的中断后,对中断芯片(模块)的操作。
irqaction
将一个硬件处理函数挂到相应的处理队列上去(当然首先要生成一个irqaction结构):


-----------------------------------------------------

int request_irq(unsigned int irq,
void (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags,
const char * devname,
void *dev_id)
-----------------------------------------------------


参数说明在源文件里说得非常清楚。
handler是硬件处理函数,在下面的代码中可以看得很清楚:

---------------------------------------------

do {
status |= action->;flags;
action->;handler(irq, action->;dev_id, regs);
action = action->;next;
} while (action);

---------------------------------------------


第二个参数就是action的dev_id,这个参数非常灵活,可以派各种用处。而且要保证的是,这个dev_id在这个处理链中是唯一的,否则删除会遇到麻烦。

第三个参数是在entry.S中压入的各个积存器的值。

它的大致流程是:

1.在slab中分配一个irqaction,填上必需的数据

以下在函数setup_irq中。

2.找到它的irq对应的结构irq_desc

3.看它是否想对随机数做贡献

4.看这个结构上是否已经挂了其它处理函数了,如果有,则必须确保它本身和这个队列上所有的处理函数都是可共享的(由于传递性,只需判断一个就可以了)

5.挂到队列最后

6.如果这个irq_desc只有它一个irqaction,那么还要进行一些初始化工作

7在proc/下面登记 register_irq_proc(irq)(这个我不太明白)

将一个处理函数取下:

void free_irq(unsigned int irq, void *dev_id)

首先在队列里找到这个处理函数(严格的说是irqaction),主要靠dev_id来匹配,这时dev_id的唯一性就比较重要了。

将它从队列里剔除。

如果这个中断号没有处理函数了,那么禁止这个中断号上再产生中断:

if (!desc->;action) {
desc->;status |= IRQ_DISABLED;
desc->;handler->;shutdown(irq);
}

如果其它CPU在运行这个处理函数,要等到它运行完了,才释放它:

#ifdef CONFIG_SMP

/* Wait to make sure it's not being used on another CPU */
while (desc->;status & IRQ_INPROGRESS)
barrier();
#endif

kfree(action);

do_IRQ
asmlinkage unsigned int do_IRQ(struct pt_regs regs)

1.首先取中断号,并且获取对应的irq_desc:

int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code */
int cpu = smp_processor_id();
irq_desc_t *desc = irq_desc + irq;

2.对中断芯片(模块)应答:

desc->;handler->;ack(irq);

3.修改它的状态(注:这些状态我觉得只有在SMP下才有意义):

status = desc->;status & ~(IRQ_REPLAY | IRQ_WAITING);
status |= IRQ_PENDING; /* we _want_ to handle it */

IRQ_REPLAY是指如果被禁止的中断号上又产生了中断,这个中断是不会被处理的,当这个中断号被允许产生中断时,会将这个未被处理的中断转为IRQ_REPLAY。

IRQ_WAITING 探测用,探测时,会将所有没有挂处理函数的中断号上设置IRQ_WAITING,如果这个中断号上有中断产生,就把这个状态去掉,因此,我们就可以知道哪些中断引脚上产生过中断了。

IRQ_PENDING , IRQ_INPROGRESS是为了确保:

同一个中断号的处理程序不能重入

不能丢失这个中断号的下一个处理程序

具体的说,当内核在运行某个中断号对应的处理程序(链)时,状态会设置成IRQ_INPROGRESS。如果在这期间,同一个中断号上又产生了中断,并且传给CPU,那么当内核打算再次运行这个中断号对应的处理程序(链)时,发现已经有一个实例在运行了,就将这下一个中断标注为IRQ_PENDING, 然后返回。这个已在运行的实例结束的时候,会查看是否期间有同一中断发生了,是则再次执行一遍。

这些状态的操作不是在什么情况下都必须的,事实上,一个CPU,用8259芯片,无论即使是开中断,也不会发生中断重入的情况,因为在这期间,内核把同一中断屏蔽掉了。

多个CPU比较复杂,因为CPU由Local APIC,每个都有自己的中断,但是它们可能调用同一个函数,比如时钟中断,每个CPU都可能产生,它们都会调用时钟中断处理函数。

从I/O APIC传过来的中断,如果是电平触发,也不会,因为在结束发出EOI前,这个引脚上是不接收中断信号。如果是边沿触发,要么是开中断,要么I/O APIC选择不同的CPU,在这两种情况下,会有重入的可能。

/*
* If the IRQ is disabled for whatever reason, we cannot
* use the action we have.
*/

action = NULL;
if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
action = desc->;action;
status &= ~IRQ_PENDING; /* we commit to handling */
status |= IRQ_INPROGRESS; /* we are handling it *//*进入执行状态*/
}

desc->;status = status;

/*
* If there is no IRQ handler or it was disabled, exit early.
Since we set PENDING, if another processor is handling
a different instance of this same irq, the other processor
will take care of it.
*/

if (!action)
goto out;/*要么该中断没有处理函数;要么被禁止运行(IRQ_DISABLE);要么有一个实例已经在运行了*/

/*
* Edge triggered interrupts need to remember
* pending events.
* This applies to any hw interrupts that allow a second
* instance of the same irq to arrive while we are in do_IRQ
* or in the handler. But the code here only handles the _second_
* instance of the irq, not the third or fourth. So it is mostly
* useful for irq hardware that does not mask cleanly in an
* SMP environment.
*/

for (; {
spin_unlock(&desc->;lock);
handle_IRQ_event(irq, &regs, action);/*执行函数链*/
spin_lock(&desc->;lock);

if (!(desc->;status & IRQ_PENDING))/*发现期间有中断,就再次执行*/
break;
desc->;status &= ~IRQ_PENDING;
}

desc->;status &= ~IRQ_INPROGRESS;/*退出执行状态*/

out:
/*
* The ->;end() handler has to deal with interrupts which got
* disabled while the handler was running.
*/

desc->;handler->;end(irq);/*给中断芯片一个结束的操作,一般是允许再次接收中断*/
spin_unlock(&desc->;lock);

if (softirq_active(cpu) & softirq_mask(cpu))
do_softirq();/*执行软中断*/
return 1;
}






[目录]

--------------------------------------------------------------------------------


软中断

软中断softirq
softirq简介
    提出softirq的机制的目的和老版本的底半部分的目的是一致的,都是将某个中断处理的一部分任务延迟到后面去执行。
    Linux内核中一共可以有32个softirq,每个softirq实际上就是指向一个函数。当内核执行softirq(do_softirq),就对这32个softirq进行轮询:

    (1)是否该softirq被定义了,并且允许被执行?
    (2)是否激活了(也就是以前有中断要求它执行)?

    如果得到肯定的答复,那么就执行这个softirq指向的函数。

    值得一提的是,无论有多少个CPU,内核一共只有32个公共的softirq,但是每个CPU可以执行不同的softirq,可以禁止/起用不同的softirq,可以激活不同的softirq,因此,可以说,所有CPU有相同的例程,但是

    每个CPU却有自己完全独立的实例。

    对(1)的判断是通过考察irq_stat[ cpu ].mask相应的位得到的。这里面的cpu指的是当前指令所在的cpu.在一开始,softirq被定义时,所有的cpu的掩码mask都是一样的。但是在实际运行中,每个cpu上运行的程序可以根据自己的需要调整。

    对(2)的判断是通过考察irq_stat[ cpu ].active相应的位得到的.

    虽然原则上可以任意定义每个softirq的函数,Linux内核为了进一步加强延迟中断功能,提出了tasklet的机制。tasklet实际上也就是一个函数。在第0个softirq的处理函数tasklet_hi_action中,我们可以看到,当执行这个函数的时候,会依次执行一个链表上所有的tasklet.

    我们大致上可以把softirq的机制概括成:

    内核依次对32个softirq轮询,如果遇到一个可以执行并且需要的softirq,就执行对应的函数,这些函数有可能又会执行一个函数队列。当执行完这个函数队列后,才会继续询问下一个softirq对应的函数。

挂上一个软中断

void open_softirq(int nr, void (*action)(struct softirq_action*), void *data)
{
unsigned long flags;
int i;

spin_lock_irqsave(&softirq_mask_lock, flags);
softirq_vec[nr].data = data;
softirq_vec[nr].action = action;

for (i=0; i<NR_CPUS; i++)
softirq_mask(i) |= (1<<nr);
spin_unlock_irqrestore(&softirq_mask_lock, flags);
}

    其中对每个CPU的softirq_mask都标注一下,表明这个softirq被定义了。

tasklet

    在这个32个softirq中,有的softirq的函数会依次执行一个队列中的tasklet
    tasklet其实就是一个函数。它的结构如下:

struct tasklet_struct
{
struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long);
unsigned long data;
};

    next 用于将tasklet串成一个队列
    state 表示一些状态,后面详细讨论
    count 用来禁用(count = 1 )或者启用( count = 0 )这个tasklet.因为一旦一个tasklet被挂到队列里,如果没有这个机制,它就一定会被执行。 这个count算是一个事后补救措施,万一挂上了不想执行,就可以把它置1。
    func 即为所要执行的函数。
    data 由于可能多个tasklet调用公用函数,因此用data可以区分不同tasklet.

如何将一个tasklet挂上


首先要初始化一个tasklet,填上相应的参数

void tasklet_init(struct tasklet_struct *t,
void (*func)(unsigned long), unsigned long data)
{
t->;func = func;
t->;data = data;
t->;state = 0;
atomic_set(&t->;count, 0);
}

    然后调用schedule函数,注意,下面的函数仅仅是将这个tasklet挂到 TASKLET_SOFTIRQ对应的软中断所执行的tasklet队列上去, 事实上,还有其它的软中断,比如HI_SOFTIRQ,会执行其它的tasklet队列,如果要挂上,那么就要调用tasklet_hi_schedule(). 如果你自己写的softirq执行一个tasklet队列,那么你需要自己写类似下面的函数。

static inline void tasklet_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {
int cpu = smp_processor_id();
unsigned long flags;

local_irq_save(flags);
/**/ t->;next = tasklet_vec[cpu].list;
/**/ tasklet_vec[cpu].list = t;

__cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
local_irq_restore(flags);
}
}

这个函数中/**/标注的句子用来挂接上tasklet,

    __cpu_raise_softirq用来激活TASKLET_SOFTIRQ,这样,下次执行do_softirq就会执行这个TASKLET_SOFTIRQ软中断了

__cpu_raise_softirq定义如下:


static inline void __cpu_raise_softirq(int cpu, int nr)
{
softirq_active(cpu) |= (1<<nr);
}

tasklet的运行方式

    我们以tasklet_action为例,来说明tasklet运行机制。事实上,还有一个函数tasklet_hi_action同样也运行tasklet队列。

    首先值得注意的是,我们前面提到过,所有的cpu共用32个softirq,但是同一个softirq在不同的cpu上执行的数据是独立的,基于这个原则,tasklet_vec对每个cpu都有一个,每个cpu都运行自己的tasklet队列。

    当执行一个tasklet队列时,内核将这个队列摘下来,以list为队列头,然后从list的下一个开始依次执行。这样做达到什么效果呢?在执行这个队列时,这个队列的结构是静止的,如果在运行期间,有中断产生,并且往这个队列里添加tasklet的话,将填加到tasklet_vec[cpu].list中, 注意这个时候,这个队列里的任何tasklet都不会被执行,被执行的是list接管的队列。

见/*1*//*2/之间的代码。事实上,在一个队列上同时添加和运行也是可行的,没这个简洁。

-----------------------------------------------------------------

static void tasklet_action(struct softirq_action *a)
{
int cpu = smp_processor_id();
struct tasklet_struct *list;

/*1*/ local_irq_disable();
list = tasklet_vec[cpu].list;
tasklet_vec[cpu].list = NULL;

/*2*/ local_irq_enable();
while (list != NULL) {
struct tasklet_struct *t = list;
list = list->;next;

/*3*/ if (tasklet_trylock(t)) {
if (atomic_read(&t->;count) == 0) {
clear_bit(TASKLET_STATE_SCHED, &t->;state);
t->;func(t->;data);
/*
* talklet_trylock() uses test_and_set_bit that imply
* an mb when it returns zero, thus we need the explicit
* mb only here: while closing the critical section.
*/

#ifdef CONFIG_SMP
/*?*/ smp_mb__before_clear_bit();
#endif
tasklet_unlock(t);
continue;
}
tasklet_unlock(t);
}
/*4*/ local_irq_disable();
t->;next = tasklet_vec[cpu].list;
tasklet_vec[cpu].list = t;
__cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
/*5*/ local_irq_enable();
}
}

-------------------------------------------------------------
    /*3*/看其它cpu是否还有同一个tasklet在执行,如果有的话,就首先将这个tasklet重新放到tasklet_vec[cpu].list指向的预备队列(见/*4*/~/*5*/),而后跳过这个tasklet.

    这也就说明了tasklet是不可重入的,以防止两个相同的tasket访问同样的变量而产生竞争条件(race condition)

tasklet的状态

    在tasklet_struct中有一个属性state,用来表示tasklet的状态:
tasklet的状态有3个:

1.当tasklet被挂到队列上,还没有执行的时候,是 TASKLET_STATE_SCHED
2.当tasklet开始要被执行的时候,是 TASKLET_STATE_RUN
其它时候,则没有这两个位的设置

其实还有另一对状态,禁止或允许,tasklet_struct中用count表示,用下面的函数操作

-----------------------------------------------------

static inline void tasklet_disable_nosync(struct tasklet_struct *t)
{
atomic_inc(&t->;count);
}

static inline void tasklet_disable(struct tasklet_struct *t)
{
tasklet_disable_nosync(t);
tasklet_unlock_wait(t);
}

static inline void tasklet_enable(struct tasklet_struct *t)
{
atomic_dec(&t->;count);
}

-------------------------------------------------------


下面来验证1,2这两个状态:

当被挂上队列时:
    首先要测试它是否已经被别的cpu挂上了,如果已经在别的cpu挂上了,则不再将它挂上,否则设置状态为TASKLET_STATE_SCHED

static inline void tasklet_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {

... ...

}

    为什么要这样做?试想,如果一个tasklet已经挂在一队列上,内核将沿着这个队列一个个执行,现在如果又被挂到另一个队列上,那么这个tasklet的指针指向另一个队列,内核就会沿着它走到错误的队列中去了。


tasklet开始执行时:

在tasklet_action中:

------------------------------------------------------------
while (list != NULL) {
struct tasklet_struct *t = list;

/*0*/ list = list->;next;

/*1*/ if (tasklet_trylock(t)) {

/*2*/ if (atomic_read(&t->;count) == 0) {

/*3*/ clear_bit(TASKLET_STATE_SCHED, &t->;state);

t->;func(t->;data);
/*
* talklet_trylock() uses test_and_set_bit that imply
* an mb when it returns zero, thus we need the explicit
* mb only here: while closing the critical section.
*/

#ifdef CONFIG_SMP
smp_mb__before_clear_bit();
#endif
/*4*/ tasklet_unlock(t);
continue;
}

---------------------------------------------------------------


1 看是否是别的cpu上这个tasklet已经是 TASKLET_STATE_RUN了,如果是就跳过这个tasklet

2 看这个tasklet是否被允许运行?

3 清除TASKLET_STATE_SCHED,为什么现在清除,它不是还没有从队列上摘下来吗?事实上,它的指针已经不再需要的,它的下一个tasklet已经被list记录了(/*0*/)。这样,如果其它cpu把它挂到其它的队列上去一点影响都没有。

4 清除TASKLET_STATE_RUN标志

    1和4确保了在所有cpu上,不可能运行同一个tasklet,这样在一定程度上确保了tasklet对数据操作是安全的,但是不要忘了,多个tasklet可能指向同一个函数,所以仍然会发生竞争条件。

    可能会有疑问:假设cpu 1上已经有tasklet 1挂在队列上了,cpu2应该根本挂不上同一个tasklet 1,怎么会有tasklet 1和它发生重入的情况呢?

    答案就在/*3*/上,当cpu 1的tasklet 1已经不是TASKLET_STATE_SCHED,而它还在运行,这时cpu2完全有可能挂上同一个tasklet 1,而且使得它试图运行,这时/*1*/的判断就起作用了。

软中断的重入

    一般情况下,在硬件中断处理程序后都会试图调用do_softirq执行软中断,但是如果发现现在已经有中断在运行,或者已经有软中断在运行,则

    不再运行自己调用的中断。也就是说,软中断是不能进入硬件中断部分的,并且软中断在一个cpu上是不可重入的,或者说是串行化的(serialize)

    其目的是避免访问同样的变量导致竞争条件的出现。在开中断的中断处理程序中不允许调用软中断可能是希望这个中断处理程序尽快结束。

这是由do_softirq中的

if (in_interrupt())
return;

保证的.

其中,

#define in_interrupt() ({ int __cpu = smp_processor_id(); \

(local_irq_count(__cpu) + local_bh_count(__cpu) != 0); })

前者local_irq_count(_cpu):

    当进入硬件中断处理程序时,handle_IRQ_event中的irq_enter(cpu, irq)会将它加1,表明又进入一个硬件中断

    退出则调用irq_exit(cpu, irq)

后者local_bh_count(__cpu) :

    当进入软中断处理程序时,do_softirq中的local_bh_disable()会将它加1,表明处于软中断中

local_bh_disable();

一个例子:

    当内核正在执行处理定时器的软中断时,这期间可能会发生多个时钟中断,这些时钟中断的处理程序都试图再次运行处理定时器的软中断,但是由于 已经有个软中断在运行了,于是就放弃返回。

软中断调用时机

最直接的调用:

    当硬中断执行完后,迅速调用do_softirq来执行软中断(见下面的代码),这样,被硬中断标注的软中断能得以迅速执行。当然,不是每次调用都成功的,见前面关于重入的帖子。
----------------------------------

论坛徽章:
0
发表于 2003-04-21 13:16 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

中断

    Linux系统中有很多不同的硬件设备。你可以同步使用这些设备,也就是说你可以发出一个请求,然后等待一直到设备完成操作以后再进行其他的工作。但这种方法的效率却非常的低,因为操作系统要花费很多的等待时间。一个更为有效的方法是发出请求以后,操作系统继续其他的工作,等设备完成操作以后,给操作系统发送一个中断,操作系统再继续处理和此设备有关的操作。
    在将多个设备的中断信号送往CPU的中断插脚之前,系统经常使用中断控制器来综合多个设备的中断。这样即可以节约CPU的中断插脚,也可以提高系统设计的灵活性。中断控制器用来控制系统的中断,它包括屏蔽和状态寄存器。设置屏蔽寄存器的各个位可以允许或屏蔽某一个中断,状态寄存器则用来返回系统中正在使用的中断。

    大多数处理器处理中断的过程都相同。当一个设备发出中段请求时,CPU停止正在执行的指令,转而跳到包括中断处理代码或者包括指向中断处理代码的转移指令所在的内存区域。这些代码一般在CPU的中断方式下运行。在此方式下,将不会再有中断发生。但有些CPU的中断有自己的优先权,这样,更高优先权的中断则可以发生。这意味着第一级的中断处理程序必须拥有自己的堆栈,以便在处理更高级别的中断前保存CPU的执行状态。当中断处理完毕以后,CPU将恢复到以前的状态,继续执行中断处理前正在执行的指令。

    中断处理程序十分简单有效,这样,操作系统就不会花太长的时间屏蔽其他的中断。

[设置Softirq]
    cpu_raise_softirq是一个轮训,唤醒ksoftirqd_CPU0内核线程, 进行管理

cpu_raise_softirq
   |__cpu_raise_softirq
   |wakeup_softirqd
      |wake_up_process

    ·cpu_raise_softirq [kernel/softirq.c]
    ·__cpu_raise_softirq [include/linux/interrupt.h]
    ·wakeup_softirq [kernel/softirq.c]
    ·wake_up_process [kernel/sched.c]

[执行Softirq]
   当内核线程ksoftirqd_CPU0被唤醒, 它会执行队列里的工作。当然ksoftirqd_CPU0也是一个死循环:

for (; {
   if (!softirq_pending(cpu))
      schedule();
      __set_current_state(TASK_RUNNING);
   while (softirq_pending(cpu)) {
      do_softirq();
      if (current->;need_resched)
         schedule
   }
   __set_current_state(TASK_INTERRUPTIBLE)
}

    ·ksoftirqd [kernel/softirq.c]


[目录]

--------------------------------------------------------------------------------


软中断

发信人: fist (星仔迷), 信区: SysInternals WWW-POST
标  题: 软中断
发信站: 武汉白云黄鹤站 (Thu Mar 22 14:12:46 2001) , 转信
软中断「一」

一、 引言
    软中断是linux系统原“底半处理”的升级,在原有的基础上发展的新的处理方式,以适应多cpu 、多线程的软中断处理。要了解软中断,我们必须要先了原来底半处理的处理机制。

二、底半处理机制(基于2.0.3版本)

    某些特殊时刻我们并不愿意在核心中执行一些操作。例如中断处理过程中。当中断发生时处理器将停止当前的工作, 操作系统将中断发送到相应的设备驱动上去。由于此时系统中其他程序都不能运行, 所以设备驱动中的中断处理过程不宜过长。有些任务最好稍后执行。Linux底层部分处理机制可以让设备驱动和Linux核心其他部分将这些工作进行排序以延迟执行。
    系统中最多可以有32个不同的底层处理过程;bh_base是指向这些过程入口的指针数组。而bh_active和 bh_mask用来表示那些处理过程已经安装以及那些处于活动状态。如果bh_mask的第N位置位则表示bh_base的 第N个元素包含底层部分处理例程。如果bh_active的第N位置位则表示第N个底层处理过程例程可在调度器认 为合适的时刻调用。这些索引被定义成静态的;定时器底层部分处理例程具有最高优先级(索引值为0), 控制台底层部分处理例程其次(索引值为1)。典型的底层部分处理例程包含与之相连的任务链表。例如 immediate底层部分处理例程通过那些需要被立刻执行的任务的立即任务队列(tq_immediate)来执行。
    --引自David A Rusling的《linux核心》。

三、对2.4.1 软中断处理机制
    下面,我们进入软中断处理部份(softirq.c):
    由softirq.c的代码阅读中,我们可以知道,在系统的初始化过程中(softirq_init()),它使用了两个数组:bh_task_vec[32],softirq_vec[32]。其中,bh_task_vec[32]填入了32个bh_action()的入口地址,但soft_vec[32]中,只有softirq_vec[0],和softirq_vec[3]分别填入了tasklet_action()和tasklet_hi_action()的地址。其余的保留它用。
    当发生软中断时,系统并不急于处理,只是将相应的cpu的中断状态结构中的active 的相应的位置位,并将相应的处理函数挂到相应的队列,然后等待调度时机来临(如:schedule(),
    系统调用返回异常时,硬中断处理结束时等),系统调用do_softirq()来测试active位,再调用被激活的进程在这处过程中,软中断的处理与底半处理有了差别,active 和mask不再对应bh_base[nr], 而是对应softirq_vec[32]。在softirq.c中,我们只涉及了softirq_vec[0]、softirq_vec[3]。这两者分别调用了tasklet_action()和tasklet_hi_action()来进行后续处理。这两个过程比较相似,大致如下:

1 锁cpu的tasklet_vec[cpu]链表,取出链表,将原链表清空,解锁,还给系统。
2 对链表进行逐个处理。
3 有无法处理的,(task_trylock(t)失败,可能有别的进程锁定),插回系统链表。至此,系统完成了一次软中断的处理。

接下来有两个问题:
1 bh_base[]依然存在,但应在何处调用?
2 tasklet_vec[cpu]队列是何时挂上的?


四、再探讨
    再次考查softirq.c 的bh_action()部份,发现有两个判断:
    A:if(!spin_trylock(&global_bh_lock))goto:rescue 指明如果global_bh_lock 不能被锁上(已被其它进程锁上),则转而执行rescue,将bh_base[nr]挂至tasklet_hi_vec[cpu]队列中。等候中断调度。
    B:if(!hardirq_trylock(cpu)) goto tescue unlock 此时有硬中断发生,放入队列推迟执行。若为空闲,现在执行。

    由此可见,这部分正是对应底半处理的程序,bh_base[]的延时处理正是底半处理的特点,可以推测,如果没有其它函数往tasklet_hi_vec[cpu]队列挂入,那tasklet_hi_vec[cpu]正完全对应着bh_base[]底半处理
    在bh_action()中,把bh_ation()挂入tasklet_hi_vec[cpu]的正是mark_bh(),在整个源码树中查找,发现调用mark_bh()的函数很多,可以理解,软中断产生之时,相关的函数会调用mark_bh(),将bh_action挂上tasklet_hi_vec队列,而bh_action()的作用不过是在发现bh_base[nr]暂时无法处理时重返队列的方法。
    由此可推测tasklet_vec队列的挂接应与此相似,查看interrupt.h,找到tasklet_schedule()函数:

157 static inline void tasklet_schedule(struct tasklet_struct *t)
158 {
159 if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {
160 int cpu = smp_processor_id();
161 unsigned long flags;
162
163 local_irq_save(flags);
164 t->;next = tasklet_vec[cpu].list;
165 tasklet_vec[cpu].list = t; /*插入队列。
166 __cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
167 local_irq_restore(flags);
168 }
169 }

    正是它为tasklet_vec[cpu]队列的建立立下了汗马功劳,在源码树中,它亦被多个模块调用,来完成它的使命。
    至此,我们可以描绘一幅完整的软中断处理图了。
    现在,再来考查do_softirq()的softirq_vec[32],在interrupt.h中有如下定义:

56 enum
57 {
58 HI_SOFTIRQ=0,
59 NET_TX_SOFTIRQ,
60 NET_RX_SOFTIRQ,
61 TASKLET_SOFTIRQ
62 };

    这四个变量应都是为softirq_vec[]的下标,那么,do_softirq()也将会处理NET_TX_SOFTIRQ和NET_RX_SOFTIRQ,是否还处理其它中断,这有待探讨。也许,这个do_softirq()有着极大的拓展性,等着我们去开发呢。

    主要通过__cpu_raise_softirq来设置
    在hi_tasklet(也就是一般用于bh的)的处理里面,在处理完当前的队列后,会将补充的队列重新挂上,然后标记(不管是否补充队列里面有tasklet):

local_irq_disable();
t->;next = tasklet_hi_vec[cpu].list;
tasklet_hi_vec[cpu].list = t;
__cpu_raise_softirq(cpu, HI_SOFTIRQ);
local_irq_enable();

    因此,对mark_bh根本不用设置这个active位。对于一般的tasklet也一样:

local_irq_disable();
t->;next = tasklet_vec[cpu].list;
tasklet_vec[cpu].list = t;
__cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
local_irq_enable();

    其它的设置,可以检索上面的__cpu_raise_softirq

bottom half, softirq, tasklet, tqueue
[bottom half]
bh_base[32]
|
\/
bh_action();
|
\/
bh_task_vec[32];
| mark_bh(), tasklet_hi_schedule()
\/
task_hi_action

bh_base对应的是32个函数,这些函数在bh_action()中调用
static void bh_action(unsigned long nr)
{
int cpu = smp_processor_id();

if (!spin_trylock(&global_bh_lock))
goto resched;

if (!hardirq_trylock(cpu))
goto resched_unlock;

if (bh_base[nr])
bh_base[nr]();

hardirq_endlock(cpu);
spin_unlock(&global_bh_lock);
return;

resched_unlock:
spin_unlock(&global_bh_lock);
resched:
mark_bh(nr);
}

    在软中断初始化时,将bh_action()放到bh_task_vec[32]中,bh_task_vec[32]中元素的类型是tasklet_struct,系统使用mark_bh()或task_hi_schedule()函数将它挂到task_hi_vec[]的对列中,在系统调用do_softirq()时执行。

static inline void mark_bh(int nr)
{
tasklet_hi_schedule(bh_task_vec+nr);
}

static inline void tasklet_hi_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {
int cpu = smp_processor_id();
unsigned long flags;

local_irq_save(flags);
t->;next = tasklet_hi_vec[cpu].list;
tasklet_hi_vec[cpu].list = t;
__cpu_raise_softirq(cpu, HI_SOFTIRQ);
local_irq_restore(flags);
}
}

[softirq]
softirq_vec[32];
struct softirq_action
{
void (*action)(struct softirq_action *);
void *data;
};

    软中断对应一个softirq_action的结构,在do_softirq()中调用相应的action()做处理。
    软中断初始化时只设置了0,3两项,对应的action是task_hi_action和task_action.

1: task_hi_action
/\
|
tasklet_hi_vec[NR_CPU]

struct tasklet_head tasklet_hi_vec[NR_CPUS] __cacheline_aligned;
struct tasklet_head
{
struct tasklet_struct *list;
} __attribute__ ((__aligned__(SMP_CACHE_BYTES)));

    task_hi_action处理的对象是一个tasklet的队列,每个cpu都有一个对应的tasklet队列,
    它在tasklet_hi_schedule中动态添加。

3: task_action
/\
|
tasklet_vec[NR_CPU]

[tasklet]
struct tasklet_struct
{

struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long);
unsigned long data;
};
从上面的分析来看tasklet只是一个调用实体,在do_softirq()中被调用。softirq的组织和结构才是最重要的。




[目录]

--------------------------------------------------------------------------------


硬中断

标题   Linux设备驱动程序的中断
作者 coly (journeyman)
时间 07/02/01 11:24 AM
Linux设备驱动程序的中断 Coly V0.1
指定参考书:《Linux设备驱动程序》(第一版)

这里总结一下Linux设备驱动程序中涉及的中断机制。

一、前言
    Linux的中断宏观分为两种:软中断和硬中断。声明一下,这里的软和硬的意思是指和软件相关以及和硬件相关,而不是软件实现的中断或硬件实现的中断。软中断就是“信号机制”。软中断不是软件中断。Linux通过信号来产生对进程的各种中断操作,我们现在知道的信号共有31个,其具体内容这里略过,感兴趣读者可参看相关参考文献[1]。

    一般来说,软中断是由内核机制的触发事件引起的(例如进程运行超时),但是不可忽视有大量的软中断也是由于和硬件有关的中断引起的,例如当打印机端口产生一个硬件中断时,会通知和硬件相关的硬中断,硬中断就会产生一个软中断并送到操作系统内核里,这样内核就会根据这个软中断唤醒睡眠在打印机任务队列中的处理进程。

    硬中断就是通常意义上的“中断处理程序”,它是直接处理由硬件发过来的中断信号的。当硬中断收到它应当处理的中断信号以后,就回去自己驱动的设备上去看看设备的状态寄存器以了解发生了什么事情,并进行相应的操作。

    对于软中断,我们不做讨论,那是进程调度里要考虑的事情。由于我们讨论的是设备驱动程序的中断问题,所以焦点集中在硬中断里。我们这里讨论的是硬中断,即和硬件相关的中断。

二、中断产生
    要中断,是因为外设需要通知操作系统她那里发生了一些事情,但是中断的功能仅仅是一个设备报警灯,当灯亮的时候中断处理程序只知道有事情发生了,但发生了什么事情还要亲自到设备那里去看才行。也就是说,当中断处理程序得知设备发生了一个中断的时候,它并不知道设备发生了什么事情,只有当它访问了设备上的一些状态寄存器以后,才能知道具体发生了什么,要怎么去处理。

    设备通过中断线向中断控制器发送高电平告诉操作系统它产生了一个中断,而操作系统会从中断控制器的状态位知道是哪条中断线上产生了中断。PC机上使用的中断控制器是8259,这种控制器每一个可以管理8条中断线,当两个8259级联的时候共可以控制15条中断线。这里的中断线是实实在在的电路,他们通过硬件接口连接到CPU外的设备控制器上。

三、IRQ
    并不是每个设备都可以向中断线上发中断信号的,只有对某一条确定的中断线勇有了控制权,才可以向这条中断线上发送信号。由于计算机的外部设备越来越多,所以15条中断线已经不够用了,中断线是非常宝贵的资源。要使用中断线,就得进行中断线的申请,就是IRQ(Interrupt Requirement),我们也常把申请一条中断线成为申请一个IRQ或者是申请一个中断号。

    IRQ是非常宝贵的,所以我们建议只有当设备需要中断的时候才申请占用一个IRQ,或者是在申请IRQ时采用共享中断的方式,这样可以让更多的设备使用中断。无论对IRQ的使用方式是独占还是共享,申请IRQ的过程都是一样的,分为3步:

1.将所有的中断线探测一遍,看看哪些中断还没有被占用。从这些还没有被占用的中断中选一个作为该设备的IRQ。
2.通过中断申请函数申请选定的IRQ,这是要指定申请的方式是独占还是共享。
3.根据中断申请函数的返回值决定怎么做:如果成功了万事大吉,如果没成功则或者重新申请或者放弃申请并返回错误。

    申请IRQ的过程,在参考书的配的源代码里有详细的描述,读者可以通过仔细阅读源代码中的short一例对中断号申请由深刻的理解。

四、中断处理程序
    Linux中的中断处理程序很有特色,它的一个中断处理程序分为两个部分:上半部(top half)和下半部(bottom half)。之所以会有上半部和下半部之分,完全是考虑到中断处理的效率。

    上半部的功能是“登记中断”。当一个中断发生时,他就把设备驱动程序中中断例程的下半部挂到该设备的下半部执行队列中去,然后就没事情了--等待新的中断的到来。这样一来,上半部执行的速度就会很快,他就可以接受更多她负责的设备产生的中断了。上半部之所以要快,是因为它是完全屏蔽中断的,如果她不执行完,其它的中断就不能被及时的处理,只能等到这个中断处理程序执行完毕以后。所以,要尽可能多得对设备产生的中断进行服务和处理,中断处理程序就一定要快。

    但是,有些中断事件的处理是比较复杂的,所以中断处理程序必须多花一点时间才能够把事情做完。可怎么样化解在短时间内完成复杂处理的矛盾呢,这时候Linux引入了下半部的概念。下半部和上半部最大的不同是下半部是可中断的,而上半部是不可中断的。下半部几乎做了中断处理程序所有的事情,因为上半部只是将下半部排到了他们所负责的设备的中断处理队列中去,然后就什么都不管了。下半部一般所负责的工作是察看设备以获得产生中断的事件信息,并根据这些信息(一般通过读设备上的寄存器得来)进行相应的处理。如果有些时间下半部不知道怎么去做,他就使用著名的鸵鸟算法来解决问题--说白了就是忽略这个事件。

    由于下半部是可中断的,所以在它运行期间,如果其它的设备产生了中断,这个下半部可以暂时的中断掉,等到那个设备的上半部运行完了,再回头来运行它。但是有一点一定要注意,那就是如果一个设备中断处理程序正在运行,无论她是运行上半部还是运行下半部,只要中断处理程序还没有处理完毕,在这期间设备产生的新的中断都将被忽略掉。因为中断处理程序是不可重入的,同一个中断处理程序是不能并行的。

    在Linux Kernel 2.0以前,中断分为快中断和慢中断(伪中断我们这里不谈),其中快中断的下半部也是不可中断的,这样可以保证它执行的快一点。但是由于现在硬件水平不断上升,快中断和慢中断的运行速度已经没有什么差别了,所以为了提高中断例程事务处理的效率,从Linux kernel 2.0以后,中断处理程序全部都是慢中断的形式了--他们的下半部是可以被中断的。

    但是,在下半部中,你也可以进行中断屏蔽--如果某一段代码不能被中断的话。你可以使用cti、sti或者是save_flag、restore_flag来实现你的想法。至于他们的用法和区别,请参看本文指定参考书中断处理部分。
进一步的细节请读者参看本文指定参考书,这里就不再所说了,详细介绍细节不是我的目的,我的目的是整理概念。

五、置中断标志位
    在处理中断的时候,中断控制器会屏蔽掉原先发送中断的那个设备,直到她发送的上一个中断被处理完了为止。因此如果发送中断的那个设备载中断处理期间又发送了一个中断,那么这个中断就被永远的丢失了。

    之所以发生这种事情,是因为中断控制器并不能缓冲中断信息,所以当前一个中断没有处理完以前又有新的中断到达,他肯定会丢掉新的中断的。但是这种缺陷可以通过设置主处理器(CPU)上的“置中断标志位”(sti)来解决,因为主处理器具有缓冲中断的功能。如果使用了“置中断标志位”,那么在处理完中断以后使用sti函数就可以使先前被屏蔽的中断得到服务。

六、中断处理程序的不可重入性
    上一节中我们提到有时候需要屏蔽中断,可是为什么要将这个中断屏蔽掉呢?这并不是因为技术上实现不了同一中断例程的并行,而是出于管理上的考虑。之所以在中断处理的过程中要屏蔽同一IRQ来的新中断,是因为中断处理程序是不可重入的,所以不能并行执行同一个中断处理程序。在这里我们举一个例子,从这里子例中可以看出如果一个中断处理程序是可以并行的话,那么很有可能会发生驱动程序锁死的情况。当驱动程序锁死的时候,你的操作系统并不一定会崩溃,但是锁死的驱动程序所支持的那个设备是不能再使用了--设备驱动程序死了,设备也就死了。

    A是一段代码,B是操作设备寄存器R1的代码,C是操作设备寄存器R2的代码。其中激发PS1的事件会使A1产生一个中断,然后B1去读R1中已有的数据,然后代码C1向R2中写数据。而激发PS2的事件会使A2产生一个中断,然后B2删除R1中的数据,然后C2读去R2中的数据。

    如果PS1先产生,且当他执行到A1和B1之间的时候,如果PS2产生了,这是A2会产生一个中断,将PS2中断掉(挂到任务队列的尾部),然后删除了R1的内容。当PS2运行到C2时,由于C1还没有向R2中写数据,所以C2将会在这里被挂起,PS2就睡眠在代码C2上,直到有数据可读的时候被信号唤醒。这是由于PS1中的B2原先要读的R1中的数据被PS2中的B2删除了,所以PS1页会睡眠在B1上,直到有数据可读的时候被信号唤醒。这样一来,唤醒PS1和PS2的事件就永远不会发生了,因此PS1和PS2之间就锁死了。

    由于设备驱动程序要和设备的寄存器打交道,所以很难写出可以重入的代码来,因为设备寄存器就是全局变量。因此,最简洁的办法就是禁止同一设备的中断处理程序并行,即设备的中断处理程序是不可重入的。

    有一点一定要清楚:在2.0版本以后的Linux kernel中,所有的上半部都是不可中断的(上半部的操作是原子性的);不同设备的下半部可以互相中断,但一个特定的下半部不能被它自己所中断(即同一个下半部不能并)。

    由于中断处理程序要求不可重入,所以程序员也不必为编写可重入的代码而头痛了。以我的经验,编写可重入的设备驱动程序是可以的,编写可重入的中断处理程序是非常难得,几乎不可能。

七、避免竞争条件的出现
    我们都知道,一旦竞争条件出现了,就有可能会发生死锁的情况,严重时可能会将整个系统锁死。所以一定要避免竞争条件的出现。这里我不多说,大家只要注意一点:绝大多数由于中断产生的竞争条件,都是在带有中断的
内核进程被睡眠造成的。所以在实现中断的时候,一定要相信谨慎的让进程睡眠,必要的时候可以使用cli、sti或者save_flag、restore_flag。具体细节请参看本文指定参考书。

八、实现
    如何实现驱动程序的中断例程,是各位读者的事情了。只要你们仔细的阅读short例程的源代码,搞清楚编写驱动程序中断例程的规则,就可以编写自己的中断例程了。只要概念正确,

    在正确的规则下编写你的代码,那就是符合道理的东西。我始终强调,概念是第一位的,能编多少代码是很其次的,我们一定要概念正确,才能进行正确的思考。

九、小结
    本文介绍了Linux驱动程序中的中断,如果读者已经新痒了的话,那么打开机器开始动手吧!

Time for you to leave!

参考文献:
1.Linux网络编程
2.编程之道
3.Linux设备驱动程序
4.Mouse drivers
5.Linux Kernel Hacking Guide
6.Unreliable Guide To Hacking The Linux Kernel




[目录]

--------------------------------------------------------------------------------


定时器代码分析

时钟和定时器中断
IRQ 0 [Timer]
|
\|/
|IRQ0x00_interrupt        //   wrapper IRQ handler
   |SAVE_ALL              ---
      |do_IRQ                |   wrapper routines
         |handle_IRQ_event  ---
            |handler() ->; timer_interrupt  // registered IRQ 0 handler
               |do_timer_interrupt
                  |do_timer
                     |jiffies++;
                     |update_process_times
                     |if (--counter <= 0) { // if time slice ended then
                        |counter = 0;        //   reset counter
                        |need_resched = 1;   //   prepare to reschedule
                     |}
         |do_softirq
         |while (need_resched) { // if necessary
            |schedule             //   reschedule
            |handle_softirq
         |}
   |RESTORE_ALL

·IRQ0x00_interrupt, SAVE_ALL [include/asm/hw_irq.h]
·do_IRQ, handle_IRQ_event [arch/i386/kernel/irq.c]
·timer_interrupt, do_timer_interrupt [arch/i386/kernel/time.c]
·do_timer, update_process_times [kernel/timer.c]
·do_softirq [kernel/soft_irq.c]
·RESTORE_ALL, while loop [arch/i386/kernel/entry.S]

    系统启动核心时,调用start_kernal()继续各方面的初始化,在这之前,各种中断都被禁止,只有在完成必要的初始化后,直到执行完Kmalloc_init()后,才允许中断(init\main.c)。与时钟中断有关的部分初始化如下:

    调用trap_init()设置各种trap入口,如system_call、GDT entry、LDT entry、call gate等。其中0~17为各种错误入口,18~47保留。

    调用init_IRQ()函数设置核心系统的时钟周期为10ms,即100HZ,它是以后按照轮转法进行CPU调度时所依照的基准时钟周期。每10ms产生的时钟中断信号直接输入到第一块8259A的INT 0(即irq0)。初始化中断矢量表中从0x20起的17个中断矢量,用bad_IRQ#_interrupt函数的地址(#为中断号)填写。

    调用sched_init()函数,设置启动第一个进程init_task。设置用于管理bottom_half机制的数据结构bh_base[],规定三类事件的中断处理函数,即时钟TIMER_BH、设备TQUEUE_BH和IMMEDIATE_BH。

    调用time_init()函数,首先读取当时的CMOS时间,最后调用setup_x86_irq(0,&irq0)函数,把irq0挂到irq_action[0]队列的后面,并把中断矢量表中第0x20项,即timer中断对应的中断矢量改为IRQ0_interrupt函数的地址,在irq0中,指定时间中断服务程序是timer_interrupt,
     static struct irqaction irq0  = { timer_interrupt, 0, 0, "timer", NULL, NULL}
    结构irqaction的定义如下:
        struct irqaction {
            void (*handler)(int, void *, struct pt_regs *);  /* 中断服务函数入口 */
            unsigned long flags;                      /* 服务允中与否标记 */
        unsigned long mask;
            const char *name;
            void *dev_id;
          struct irqaction *next;
    };
    其中,若flag==SA_INTERRUPT,则中断矢量改为fast_IRQ#_interrupt,在执行中断服务的过程中不允许出现中断,若为其它标记,则中断矢量为IRQ#_interrupt,在执行中断服务的过程中,允许出现中断。
Irq_action的定义与初始化如下:
    static void (*interrupt[17])(void) = {IRQ#_interrupt};
            static void (*fast_interrupt[16])(void) = {fast_IRQ#_interrupt};
    static void (*bad_interrupt[16])(void) = {bad_IRQ#_interrupt};(以上#为中断号)
    static struct irqaction *irq_action[16] = {
            NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL
    };

    irq_action是一个全局数组,每个元素指向一个irq队列,共16个irq队列,时钟中断请求队列在第一个队列,即irq_action[0]。当每个中断请求到来时,都调用setup_x86_irq把该请求挂到相应的队列的后面。

    以后,系统每10ms产生一次时钟中断信号,该信号直接输入到第一块8259A的INT 0(即irq0)。CPU根据中断矢量表和中断源,找到中断矢量函数入口IRQ0_interrupt(程序运行过程中允许中断)或者fast_IRQ0_interrupt(程序运行过程中不允许中断)或者bad_IRQ0_interrupt(不执行任何动作,直接返回),这些函数由宏BUILD_TIMER_IRQ(chip, nr, mask)展开定义。
宏BUILD_TIMER_IRQ(chip, nr, mask)的定义如下:
#define BUILD_TIMER_IRQ(chip,nr,mask) \
asmlinkage void IRQ_NAME(nr); \
asmlinkage void FAST_IRQ_NAME(nr); \
asmlinkage void BAD_IRQ_NAME(nr); \
__asm__( \
"\n"__ALIGN_STR"\n" \
SYMBOL_NAME_STR(fast_IRQ) #nr "_interrupt:\n\t" \
SYMBOL_NAME_STR(bad_IRQ) #nr "_interrupt:\n\t" \
SYMBOL_NAME_STR(IRQ) #nr "_interrupt:\n\t" \
        "pushl $-"#nr"-2\n\t" \
        SAVE_ALL \
        ENTER_KERNEL \
        ACK_##chip(mask,(nr&7)) \
        "incl "SYMBOL_NAME_STR(intr_count)"\n\t"\  /* intr_count为进入临界区的同步信号量 */
        "movl %esp,%ebx\n\t" \
        "pushl %ebx\n\t" \
        "pushl $" #nr "\n\t" \                                                /* 把do_irq函数参数压进堆栈 */
        "call "SYMBOL_NAME_STR(do_IRQ)"\n\t" \
        "addl $8,%esp\n\t" \
        "cli\n\t" \
        UNBLK_##chip(mask) \
        "decl "SYMBOL_NAME_STR(intr_count)"\n\t" \
        "incl "SYMBOL_NAME_STR(syscall_count)"\n\t" \
        "jmp ret_from_sys_call\n";

    其中nr为中断请求类型,取值0~15。在irq.c中通过语句BUILD_TIMER_IRQ(first, 0, 0x01)调用该宏,在执行宏的过程中处理时钟中断响应程序do_irq()。

    函数do_irq()的第一个参数是中断请求队列序号,时钟中断请求传进来的该参数是0。于是程序根据参数0找到请求队列irq_action[0],逐个处理该队列上handler所指的时钟中断请求的服务函数。由于已经指定时钟中断请求的服务函数是timer_interrupt,在函数timer_interrupt中,立即调用do_timer()函数。

    函数do_timer()把jiffies和lost_ticks加1,接着就执行mark_bh(TIMER_BH)函数,把bottom_half中时钟队列对应的位置位,表示该队列处于激活状态。在做完这些动作后,程序从函数do_irq()中返回,继续执行以后的汇编代码。于是,程序在执行语句jmp ret_from_sys_call后,跳到指定的位置处继续执行。

代码段jmp ret_from_sys_call及其相关的代码段如下:
        ALIGN
        .globl ret_from_sys_call
ret_from_sys_call:
        cmpl $0,SYMBOL_NAME(intr_count)
        jne 2f
9:        movl SYMBOL_NAME(bh_mask),%eax
        andl SYMBOL_NAME(bh_active),%eax
        jne handle_bottom_half
#ifdef __SMP__
        cmpb $(NO_PROC_ID), SYMBOL_NAME(saved_active_kernel_processor)
        jne 2f
#endif
        movl EFLAGS(%esp),%eax                # check VM86 flag: CS/SS are
        testl $(VM_MASK),%eax                # different then
        jne 1f
        cmpw $(KERNEL_CS),CS(%esp)        # was old code segment supervisor ?
        je 2f
1:        sti
        orl $(IF_MASK),%eax                # these just try to make sure
        andl $~NT_MASK,%eax                # the program doesn't do anything
        movl %eax,EFLAGS(%esp)                # stupid
        cmpl $0,SYMBOL_NAME(need_resched)
        jne reschedule
#ifdef __SMP__
        GET_PROCESSOR_OFFSET(%eax)
        movl SYMBOL_NAME(current_set)(,%eax), %eax
#else
        movl SYMBOL_NAME(current_set),%eax
#endif
        cmpl SYMBOL_NAME(task),%eax        # task[0] cannot have signals
        je 2f
        movl blocked(%eax),%ecx
        movl %ecx,%ebx                        # save blocked in %ebx for signal handling
        notl %ecx
        andl signal(%eax),%ecx
        jne signal_return
2:        RESTORE_ALL

ALIGN
signal_return:
        movl %esp,%ecx
        pushl %ecx
        testl $(VM_MASK),EFLAGS(%ecx)
        jne v86_signal_return
        pushl %ebx
        call SYMBOL_NAME(do_signal)
        popl %ebx
        popl %ebx
        RESTORE_ALL

ALIGN
v86_signal_return:
        call SYMBOL_NAME(save_v86_state)
        movl %eax,%esp
        pushl %eax
        pushl %ebx
        call SYMBOL_NAME(do_signal)
        popl %ebx
        popl %ebx
        RESTORE_ALL

  handle_bottom_half:
incl SYMBOL_NAME(intr_count)
call SYMBOL_NAME(do_bottom_half)
decl SYMBOL_NAME(intr_count)
jmp 9f

ALIGN
reschedule:
pushl $ret_from_sys_call
  jmp SYMBOL_NAME(schedule)    # test

另外,一些与时钟中断及bottom half机制有关的数据结构介绍如下:
#define        HZ        100
unsigned long volatile jiffies=0;
系统每隔10ms自动把它加1,它是核心系统计时的单位。
enum {
        TIMER_BH = 0,
        CONSOLE_BH,
        TQUEUE_BH,
        DIGI_BH,
        SERIAL_BH,
        RISCOM8_BH,
SPECIALIX_BH,
        BAYCOM_BH,
        NET_BH,
        IMMEDIATE_BH,
        KEYBOARD_BH,
        CYCLADES_BH,
        CM206_BH
};
现在只定义了13个bottom half队列,将来可扩充到32个队列。
unsigned long intr_count = 0;
相当于信号量的作用。只有其等于0,才可以do_bottom_half。
int bh_mask_count[32];
用来计算bottom half队列被屏蔽的次数。只有某队列的bh_mask_count数为0,才能enable该队列。
unsigned long bh_active = 0;
bh_active是32位长整数,每一位表示一个bottom half队列,该位置1,表示该队列处于激活状态,随时准备在CPU认为合适的时候执行该队列的服务,置0则相反。
unsigned long bh_mask = 0;
bh_mask也是32位长整数,每一位对应一个bottom half队列,该位置1,表示该队列可用,并把处理函数的入口地址赋给bh_base,置0则相反。
void (*bh_base[32])(void);
bottom half服务函数入口地址数组。定时器处理函数拥有最高的优先级,它的地址存放在bh_base[0],总是最先执行它所指向的函数。

我们注意到,在IRQ#_interrupt和fast_IRQ#_interrupt中断函数处理返回前,都通过语句jmp ret_from_sys_call,跳到系统调用的返回处(见irq.h),如果bottom half队列不为空,则在那里做类似:
           if (bh_active & bh_mask) {
                            intr_count = 1;
                            do_bottom_half();
                            intr_count = 0;
                    }(该判断的汇编代码见Entry.S)
的判断,调用do_bottom_half()函数。
在CPU调度时,通过schedule函数执行上述的判断,再调用do_bottom_half()函数。
总而言之,在下列三种时机:
CPU调度时
系统调用返回前
中断处理返回前
都会作判断调用do_bottom_half函数。Do_bottom_half函数依次扫描32个队列,找出需要服务的队列,执行服务后把对应该队列的bh_active的相应位置0。由于bh_active标志中TIMER_BH对应的bit为1,因而系统根据服务函数入口地址数组bh_base找到函数timer_bh()的入口地址,并马上执行该函数,在函数timer_bh中,调用函数run_timer_list()和函数run_old_timers()函数,定时执行服务。

TVECS结构及其实现
有关TVECS结构的一些数据结构定义如下:

#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

#define SLOW_BUT_DEBUGGING_TIMERS 0

struct timer_vec {
        int index;
        struct timer_list *vec[TVN_SIZE];
};
struct timer_vec_root {
        int index;
        struct timer_list *vec[TVR_SIZE];
};

static struct timer_vec tv5 = { 0 };
static struct timer_vec tv4 = { 0 };
static struct timer_vec tv3 = { 0 };
static struct timer_vec tv2 = { 0 };
static struct timer_vec_root tv1 = { 0 };

static struct timer_vec * const tvecs[] = {
        (struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
};
#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))
static unsigned long timer_jiffies = 0;

TVECS结构是一个元素个数为5的数组,分别指向tv1,tv2,tv3,tv4,tv5的地址。其中,tv1是结构timer_vec_root的变量,它有一个index域和有256个元素的指针数组,该数组的每个元素都是一条类型为timer_list的链表。其余四个元素都是结构timer_vec的变量,它们各有一个index域和64个元素的指针数组,这些数组的每个元素也都是一条链表。

函数internal_add_timer(struct timer_list *timer)

函数代码如下:
static inline void internal_add_timer(struct timer_list *timer)
{
        /*
        * must be cli-ed when calling this
        */
        unsigned long expires = timer->;expires;
        unsigned long idx = expires - timer_jiffies;

        if (idx < TVR_SIZE) {
                int i = expires & TVR_MASK;
                insert_timer(timer, tv1.vec, i);
        } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
                int i = (expires >;>; TVR_BITS) & TVN_MASK;
                insert_timer(timer, tv2.vec, i);
        } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
                int i = (expires >;>; (TVR_BITS + TVN_BITS)) & TVN_MASK;
                insert_timer(timer, tv3.vec, i);
        } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
                int i = (expires >;>; (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
                insert_timer(timer, tv4.vec, i);
        } else if (expires < timer_jiffies) {
                /* can happen if you add a timer with expires == jiffies,
                * or you set a timer to go off in the past
                */
                insert_timer(timer, tv1.vec, tv1.index);
        } else if (idx < 0xffffffffUL) {
                int i = (expires >;>; (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
                insert_timer(timer, tv5.vec, i);
        } else {
                /* Can only get here on architectures with 64-bit jiffies */
                timer->;next = timer->;prev = timer;
        }
}

   expires


在调用该函数之前,必须关中。对该函数的说明如下:
取出要加进TVECS的timer的激发时间(expires),算出expires与timer_jiffies的差值idx,用来决定该插到哪个队列中去。
若idx小于2^8,则取expires的第0位到第7位的值I,把timer加到tv1.vec中第I个链表的第一个表项之前。
若idx小于2^14,则取expires的第8位到第13位的值I,把timer加到tv2.vec中第I个链表的第一个表项之前。
若idx小于2^20,则取expires的第14位到第19位的值I,把timer加到tv3.vec中第I个链表的第一个表项之前。
若idx小于2^26,则取expires的第20位到第25位的值I,把timer加到tv4.vec中第I个链表的第一个表项之前。
若expires小于timer_jiffies,即idx小于0,则表明该timer到期,应该把timer放入tv1.vec中tv1.index指定的链表的第一个表项之前。
若idx小于2^32,则取expires的第26位到第32位的值I,把timer加到tv5.vec中第I个链表的第一个表项之前。
若idx大等于2^32,该情况只有在64位的机器上才有可能发生,在这种情况下,不把timer加入TVECS结构。

函数cascade_timers(struct timer_vec *tv)

该函数只是把tv->;index指定的那条链表上的所有timer调用internal_add_timer()函数进行重新调整,这些timer将放入TVECS结构中比原来位置往前移一级,比如说,tv4上的timer将放到tv3上去,tv2上的timer将放到tv1上。这种前移是由run_timer_list函数里调用cascade_timers函数的时机来保证的。然后把该条链表置空,tv->;index加1,若tv->;index等于64,则重新置为0。

函数run_timer_list()

函数代码如下:
static inline void run_timer_list(void)
{
cli();
while ((long)(jiffies - timer_jiffies) >;= 0) {
        struct timer_list *timer;
        if (!tv1.index) {
                int n = 1;
                do {
                        cascade_timers(tvecs[n]);
                } while (tvecs[n]->;index == 1 && ++n < NOOF_TVECS);
        }
        while ((timer = tv1.vec[tv1.index])) {
                void (*fn)(unsigned long) = timer->;function;
                unsigned long data = timer->;data;
                detach_timer(timer);
                timer->;next = timer->;prev = NULL;
                sti();
                fn(data);
                cli();
        }
        ++timer_jiffies;
        tv1.index = (tv1.index + 1) & TVR_MASK;
}
sti();
}
对run_timer_list函数的说明如下:
关中。
判断jiffies是否大等于timer_jiffies,若不是,goto 8。
判断tv1.index是否为0(即此时系统已经扫描过整个tv1的256个timer_list链表,又回到的第一个链表处,此时需重整TVECS结构),若是,置n为1;若不是,goto 6。
调用cascade_timers()函数把TVECS[n]中由其index指定的那条链表上的timer放到TVECS[n-1]中来。注意:调用cascade_timers()函数后,index已经加1。
判断TVECS[n]->;index是否为1,即原来为0。如果是(表明TVECS[n]上所有都已经扫描一遍,此时需对其后一级的TVECS[++n]调用cascade_timers()进行重整),把n加1,goto 4。
执行tv1.vec上由tv1->;index指定的那条链表上的所有timer的服务函数,并把该timer从链表中移走。在执行服务函数的过程中,允许中断。
timer_jiffies加1,tv1->;index加1,若tv1->;index等于256,则重新置为0,goto 2。
开中,返回。

Linux提供了两种定时器服务。一种早期的由timer_struct等结构描述,由run_old_times函数处理。另一种“新”的服务由timer_list等结构描述,由add_timer、del_timer、cascade_time和run_timer_list等函数处理。
早期的定时器服务利用如下数据结构:
struct timer_struct {
    unsigned long expires;  /*本定时器被唤醒的时刻 */
    void (*fn)(void);       /* 定时器唤醒后的处理函数 */
}
struct timer_struct timer_table[32];  /*最多可同时启用32个定时器 */
unsigned long timer_active;        /* 每位对应一定时器,置1表示启用 */
新的定时器服务依靠链表结构突破了32个的限制,利用如下的数据结构:
struct timer_list {
    struct timer_list *next;
    struct timer_list *prev;
    unsigned long expires;
    unsigned long data;          /* 用来存放当前进程的PCB块的指针,可作为参数传
    void (*function)(unsigned long);  给function */
}


表示上述数据结构的图示如下:


    在这里,顺便简单介绍一下旧的timer机制的运作情况。
    系统在每次调用函数do_bottom_half时,都会调用一次函数run_old_timers()。
函数run_old_timers()
该函数处理的很简单,只不过依次扫描timer_table中的32个定时器,若扫描到的定时器已经到期,并且已经被激活,则执行该timer的服务函数。

间隔定时器itimer
系统为每个进程提供了三个间隔定时器。当其中任意一个定时器到期时,就会发出一个信号给进程,同时,定时器重新开始运作。三种定时器描述如下:
ITIMER_REAL  真实时钟,到期时送出SIGALRM信号。
ITIMER_VIRTUAL  仅在进程运行时的计时,到期时送出SIGVTALRM信号。
ITIMER_PROF  不仅在进程运行时计时,在系统为进程运作而运行时它也计时,与ITIMER_VIRTUAL对比,该定时器通常为那些在用户态和核心态空间运行的应用所花去的时间计时,到期时送出SIGPROF信号。
与itimer有关的数据结构定义如下:
struct timespec {
        long        tv_sec;                /* seconds */
        long        tv_nsec;        /* nanoseconds */
};
struct timeval {
        int        tv_sec;                /* seconds */
        int        tv_usec;        /* microseconds */
};
struct  itimerspec {
        struct  timespec it_interval;    /* timer period */
        struct  timespec it_value;       /* timer expiration */
};
struct        itimerval {
        struct        timeval it_interval;        /* timer interval */
        struct        timeval it_value;        /* current value */
};

这三种定时器在task_struct中定义:
struct task_struct {
    ……
    unsigned long timeout;
    unsigned long it_real_value,it_prof_value,it_virt_value;
    unsigned long it_real_incr,it_prof_incr,it_virt_incr;
    struct timer_list real_timer;
    ……
}
在进程创建时,系统把it_real_fn函数的入口地址赋给real_timer.function。(见sched.h)
我们小组分析了三个系统调用:sys_getitimer,sys_setitimer,sys_alarm。
在这三个系统调用中,需用到以下一些函数:
函数static int _getitimer(int which, struct itimerval *value)
该函数的运行过程大致如下:
根据传进的参数which按三种itimer分别处理:
若是ITIMER_REAL,则设置interval为current进程的it_real_incr,val设置为0;判断current进程的real_timer有否设置并挂入TVECS结构中,若有,设置val为current进程real_timer的expires,并把real_timer重新挂到TVECS结构中,接着把val与当前jiffies作比较,若小等于当前jiffies,则说明该real_timer已经到期,于是重新设置val为当前jiffies的值加1。最后把val减去当前jiffies的值,goto 2。
若是ITIMER_VIRTUAL,则分别设置interval,val的值为current进程的it_virt_incr、it_virt_value,goto 2。
若是ITIMER_PROF,则分别设置interval,val的值为current进程的it_prof_incr、it_prof_value,goto 2。
   (2)调用函数jiffiestotv把val,interval的jiffies值转换为timeval,返回0。
函数 int _setitimer(int which, struct itimerval *value, struct itimerval *ovalue)
该函数的运行过程大致如下:
调用函数tvtojiffies把value中的interval和value转换为jiffies i 和 j。
判断指针ovalue是否为空,若空,goto ;若不空,则把由which指定类型的itimer存入ovalue中,若存放不成功,goto 4;
根据which指定的itimer按三种类型分别处理:
若是ITIMER_REAL,则从TVECS结构中取出current进程的real_timer,并重新设置current进程的it_real_value和it_real_incr为j和i。若j等于0,goto 4;若不等于0,则把当前jiffies的值加上定时器剩余时间j,得到触发时间。若i小于j,则表明I已经溢出,应该重新设为ULONG_MAX。最后把current进程的real_timer的expires设为i,把设置过的real_timer重新加入TVECS结构,goto 4。
若是ITIMER_VIRTUAL,则设置current进程的it-_virt_value和it_virt_incr为j和i。
若是ITIMER_PROF,则设置current进程的it-_prof_value和it_prof_incr为j和i。
   (4)返回0。

函数verify_area(int type, const void *addr, unsigned long size)
该函数的主要功能是对以addr为始址的,长度为size的一块存储区是否有type类型的操作权利。

函数memcpy_tofs(to, from, n)
该函数的主要功能是从以from为始址的存储区中取出长度为n的一块数据放入以to为始址的存储区。

函数memcpy_fromfs(from, to, n)
该函数的主要功能是从以from为始址的存储区中取出长度为n的一块数据放入以to为始址的存储区。

函数memset((char*)&set_buffer, 0, sizeof(set_buffer))
该函数的主要功能是把set_buffer中的内容置为0,在这里,即把it_value和it_interval置为0。

现在,我简单介绍一下这三个系统调用:
系统调用sys_getitimer(int which, struct itimerval *value)

首先,若value为NULL,则返回-EFAULT,说明这是一个bad address。
其次,把which类型的itimer取出放入get_buffer。
再次,若存放成功,再确认对value的写权利。
最后,则把get_buffer中的itimer取出,拷入value。

系统调用sys_setitimer(int which, struct itimerval *value,struct itimerval *ovalue)

首先,判断value是否为NULL,若不是,则确认对value是否有读的权利,并把set_buffer中的数据拷入value;若value为NULL,则把set_buffer中的内容置为0,即把it_value和it_interval置为0。
其次,判断ovalue是否为NULL,若不是,则确认对ovalue是否有写的权利。
再次,调用函数_setitimer设置由which指定类型的itimer。
最后,调用函数memcpy_tofs把get_buffer中的数据拷入ovalue,返回。

系统调用sys_alarm(unsigned int seconds)

该系统调用重新设置进程的real_itimer,若seconds为0,则把原先的alarm定时器删掉。并且设interval为0,故只触发一次,并把旧的real_timer存入oldalarm,并返回oldalarm。




[目录]

--------------------------------------------------------------------------------


from aka


[目录]

--------------------------------------------------------------------------------


硬件中断

硬件中断
硬件中断概述

中断可以用下面的流程来表示:

中断产生源 -->; 中断向量表 (idt) -->; 中断入口 ( 一般简单处理后调用相应的函数) --->;do_IRQ-->; 后续处理(软中断等工作)

具体地说,处理过程如下:

中断信号由外部设备发送到中断芯片(模块)的引脚

中断芯片将引脚的信号转换成数字信号传给CPU,例如8259主芯片引脚0发送的是0x20

CPU接收中断后,到中断向量表IDT中找中断向量

根据存在中断向量中的数值找到向量入口

由向量入口跳转到一个统一的处理函数do_IRQ

在do_IRQ中可能会标注一些软中断,在执行完do_IRQ后执行这些软中断。

下面一一介绍。

8259芯片

本文主要参考周明德《微型计算机系统原理及应用》和billpan的相关帖子

1.中断产生过程

(1)如果IR引脚上有信号,会使中断请求寄存器(Interrupt Request Register,IRR)相应的位置位,比如图中, IR3, IR4, IR5上有信号,那么IRR的3,4,5为1

(2)如果这些IRR中有一个是允许的,也就是没有被屏蔽,那么就会通过INT向CPU发出中断请求信号。屏蔽是由中断屏蔽寄存器(Interrupt Mask Register,IMR)来控制的,比如图中位3被置1,也就是IRR位3的信号被屏蔽了。在图中,还有4,5的信号没有被屏蔽,所以,会向CPU发出请求信号。

(3)如果CPU处于开中断状态,那么在执行指令的最后一个周期,在INTA上做出回应,并且关中断.

(4)8259A收到回应后,将中断服务寄存器(In-Service Register)置位,而将相应的IRR复位:

8259芯片会比较IRR中的中断的优先级,如上图中,由于IMR中位3处于屏蔽状态,所以实际上只是比较IR4,I5,缺省情况下,IR0最高,依次往下,IR7最低(这种优先级可以被设置),所以上图中,ISR被设置为4.

(5)在CPU发出下一个INTA信号时,8259将中断号送到数据线上,从而能被CPU接收到,这里有个问题:比如在上图中,8259获得的是数4,但是CPU需要的是中断号(并不为4),从而可以到idt找相应的向量。所以有一个从ISR的信号到中断号的转换。在Linux的设置中,4对应的中断号是0x24.

(6)如果8259处于自动结束中断(Automatic End of Interrupt AEOI)状态,那么在刚才那个INTA信号结束前,8259的ISR复位(也就是清0),如果不处于这个状态,那么直到CPU发出EOI指令,它才会使得ISR复位。

2.一些相关专题

(1)从8259

在x86单CPU的机器上采用两个8259芯片,主芯片如上图所示,x86模式规定,从8259将它的INT脚与主8259的IR2相连,这样,如果从8259芯片的引脚IR8-IR15上有中断,那么会在INT上产生信号,主8259在IR2上产生了一个硬件信号,当它如上面的步骤处理后将IR2的中断传送给CPU,收到应答后,会通过CAS通知从8259芯片,从8259芯片将IRQ中断号送到数据线上,从而被CPU接收。

由此,我猜测它产生的所有中断在主8259上优先级为2,不知道对不对。

(2)关于屏蔽

从上面可以看出,屏蔽有两种方法,一种作用于CPU, 通过清除IF标记,使得CPU不去响应8259在INT上的请求。也就是所谓关中断。

另一种方法是,作用于8259,通过给它指令设置IMR,使得相应的IRR不参与ISR(见上面的(4)),被称为禁止(disable),反之,被称为允许(enable).

每次设置IMR只需要对端口0x21(主)或0xA1(从)输出一个字节即可,字节每位对应于IMR每位,例如:

outb(cached_21,0x21);

为了统一处理16个中断,Linux用一个16位cached_irq_mask变量来记录这16个中断的屏蔽情况:

static unsigned int cached_irq_mask = 0xffff;

为了分别对应于主从芯片的8位IMR,将这16位cached_irq_mask分成两个8位的变量:

#define __byte(x,y) (((unsigned char *)&(y))[x])
#define cached_21 (__byte(0,cached_irq_mask))
#define cached_A1 (__byte(1,cached_irq_mask))

在禁用某个irq的时候,调用下面的函数:

void disable_8259A_irq(unsigned int irq){
unsigned int mask = 1 << irq;
unsigned long flags;
spin_lock_irqsave(&i8259A_lock, flags);
cached_irq_mask |= mask;                /*-- 对这16位变量设置 */
if (irq &                             /*-- 看是对主8259设置还是对从芯片设置 */
outb(cached_A1,0xA1);                   /*-- 对从8259芯片设置 */
else
outb(cached_21,0x21);                   /*-- 对主8259芯片设置 */
spin_unlock_irqrestore(&i8259A_lock, flags);
}


(3)关于中断号的输出


8259在ISR里保存的只是irq的ID,但是它告诉CPU的是中断向量ID,比如ISR保存时钟中断的ID 0,但是在通知CPU却是中断号0x20.因此需要建立一个映射。在8259芯片产生的IRQ号必须是连续的,也就是如果irq0对应的是中断向量0x20,那么irq1对应的就是0x21,...

在i8259.c/init_8259A()中,进行设置:

outb_p(0x11, 0x20); /* ICW1: select 8259A-1 init */
outb_p(0x20 + 0, 0x21); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
outb_p(0x04, 0x21); /* 8259A-1 (the master) has a slave on IR2 */
if (auto_eoi)
outb_p(0x03, 0x21); /* master does Auto EOI */
else
outb_p(0x01, 0x21); /* master expects normal EOI */
outb_p(0x11, 0xA0); /* ICW1: select 8259A-2 init */
outb_p(0x20 + 8, 0xA1); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
outb_p(0x02, 0xA1); /* 8259A-2 is a slave on master's IR2 */
outb_p(0x01, 0xA1); /* (slave's support for AEOI in flat mode is to be investigated) */


这样,在IDT的向量0x20-0x2f可以分别填入相应的中断处理函数的地址了。

i386中断门描述符

段选择符和偏移量决定了中断处理函数的入口地址

在这里段选择符指向内核中唯一的一个代码段描述符的地址__KERNEL_CS(=0x10),而这个描述符定义的段为0到4G:

---------------------------------------------------------------------------------

ENTRY(gdt_table) .quad 0x0000000000000000 /* NULL descriptor */
.quad 0x0000000000000000 /* not used */
.quad 0x00cf9a000000ffff /* 0x10 kernel 4GB code at 0x00000000 */
... ...
---------------------------------------------------------------------------------

而偏移量就成了绝对的偏移量了,在IDT的描述符中被拆成了两部分,分别放在头和尾。

P标志着这个代码段是否在内存中,本来是i386提供的类似缺页的机制,在Linux中这个已经不用了,都设成1(当然内核代码是永驻内存的,但即使不在内存,推测linux也只会用缺页的标志)。

DPL在这里是0级(特权级)

0D110中,D为1,表明是32位程序(这个细节见i386开发手册).110是中断门的标识,其它101是任务门的标识, 111是陷阱(trap)门标识。

Linux对中断门的设置

于是在Linux中对硬件中断的中断门的设置为:

init_IRQ(void)
---------------------------------------------------------

for (i = 0; i < NR_IRQS; i++) {
int vector = FIRST_EXTERNAL_VECTOR + i;
if (vector != SYSCALL_VECTOR)
set_intr_gate(vector, interrupt[ i]);
}

----------------------------------------------------------

其中,FIRST_EXTERNAL_VECTOR=0x20,恰好为8259芯片的IR0的中断门(见8259部分),也就是时钟中断的中断门),interrupt[ i]为相应处理函数的入口地址

NR_IRQS=224, =256(IDT的向量总数)-32(CPU保留的中断的个数),在这里设置了所有可设置的向量。

SYSCALL_VECTOR=0x80,在这里意思是避开系统调用这个向量。


而set_intr_gate的定义是这样的:

----------------------------------------------------

void set_intr_gate(unsigned int n, void *addr){
_set_gate(idt_table+n,14,0,addr);
}

----------------------------------------------------

其中,需要解释的是:14是标识指明这个是中断门,注意上面的0D110=01110=14;另外,0指明的是DPL.

中断入口


以8259的16个中断为例:
通过宏BUILD_16_IRQS(0x0), BI(x,y),以及

#define BUILD_IRQ(nr) \
asmlinkage void IRQ_NAME(nr); \
__asm__( \
"\n"__ALIGN_STR"\n" \
SYMBOL_NAME_STR(IRQ) #nr "_interrupt:\n\t" \
"pushl $"#nr"-256\n\t" \
"jmp common_interrupt";

得到的16个中断处理函数为:


IRQ0x00_interrupt:
push $0x00 - 256
jump common_interrupt
IRQ0x00_interrupt:
push $0x01 - 256
jump common_interrupt

... ...


IRQ0x0f_interrupt:
push $0x0f - 256
jump common_interrupt


这些处理函数简单的把中断号-256(为什么-256,也许是避免和内部中断的中断号有冲突)压到栈中,然后跳到common_interrupt


其中common_interrupt是由宏BUILD_COMMON_IRQ()展开:

#define BUILD_COMMON_IRQ() \
asmlinkage void call_do_IRQ(void); \
__asm__( \
"\n" __ALIGN_STR"\n" \
"common_interrupt:\n\t" \
SAVE_ALL \
"pushl $ret_from_intr\n\t" \
SYMBOL_NAME_STR(call_do_IRQ)":\n\t" \
"jmp "SYMBOL_NAME_STR(do_IRQ));
.align 4,0x90common_interrupt:
SAVE_ALL展开的保护现场部分
push $ret_from_intrcall
do_IRQ:
jump do_IRQ;

从上面可以看出,这16个的中断处理函数不过是把中断号-256压入栈中,然后保护现场,最后调用do_IRQ .在common_interrupt中,为了使do_IRQ返回到entry.S的ret_from_intr标号,所以采用的是压入返回点ret_from_intr,用jump来模拟一个从ret_from_intr上面对do_IRQ的一个调用。

和IDT的衔接

为了便于IDT的设置,在数组interrupt中填入所有中断处理函数的地址:

void (*interrupt[NR_IRQS])(void) = {
IRQ0x00_interrupt,
IRQ0x01_interrupt,
... ...
}

在中断门的设置中,可以看到是如何利用这个数组的。
硬件中断处理函数do_IRQ

do_IRQ的相关对象

在do_IRQ中,一个中断主要由三个对象来完成

其中, irq_desc_t对象构成的irq_desc[]数组元素分别对应了224个硬件中断(idt一共256项,cpu自己前保留了32项,256-32=224,当然这里面有些项是不用的,比如x80是系统调用).

当发生中断时,函数do_IRQ就会在irq_desc[]相应的项中提取各种信息来完成对中断的处理。

irq_desc有一个字段handler指向发出这个中断的设备的处理对象hw_irq_controller,比如在单CPU,这个对象一般就是处理芯片8259的对象。为什么要指向这个对象呢?因为当发生中断的时候,内核需要对相应的中断进行一些处理,比如屏蔽这个中断等。这个时候需要对中断设备(比如8259芯片)进行操作,于是可以通过这个指针指向的对象进行操作。

irq_desc还有一个字段action指向对象irqaction,后者是产生中断的设备的处理对象,其中的handler就是处理函数。由于一个中断可以由多个设备发出,Linux内核采用轮询的方式,将所有产生这个中断的设备的处理对象连成一个链表,一个一个执行。

例如,硬盘1,硬盘2都产生中断IRQx,在do_IRQ中首先找到irq_desc[x],通过字段handler对产生中断IRQx的设备进行处理(对8259而言,就是屏蔽以后的中断IRQx),然后通过action先后运行硬盘1和硬盘2的处理函数。


hw_irq_controller
hw_irq_controller有多种:

1.在一般单cpu的机器上,通常采用两个8259芯片,因此hw_irq_controller指的就是i8259A_irq_type

2.在多CPU的机器上,采用APIC子系统来处理芯片,APIC有3个部分组成,一个是I/O APIC模块,其作用可比做8259芯片,但是它发出的中断信号会通过 APIC总线送到其中一个(或几个)CPU中的Local APIC模块,因此,它还起一个路由的作用;它可以接收16个中断。

中断可以采取两种方式,电平触发和边沿触发,相应的,I/O APIC模块的hw_irq_controller就有两种:

ioapic_level_irq_type
ioapic_edge_irq_type

(这里指的是intel的APIC,还有其它公司研制的APIC,我没有研究过)

3. Local APIC自己也能单独处理一些直接对CPU产生的中断,例如时钟中断(这和没有使用Local APIC模块的CPU不同,它们接收的时钟中断来自外围的时钟芯片),因此,它也有自己的 hw_irq_controller:

lapic_irq_type
struct hw_interrupt_type {
const char * typename;
unsigned int (*startup)(unsigned int irq);
void (*shutdown)(unsigned int irq);
void (*enable)(unsigned int irq);
void (*disable)(unsigned int irq);
void (*ack)(unsigned int irq);
void (*end)(unsigned int irq);
void (*set_affinity)(unsigned int irq, unsigned long mask);
};

typedef struct hw_interrupt_type hw_irq_controller;


startup 是启动中断芯片(模块),使得它开始接收中断,一般情况下,就是将 所有被屏蔽的引脚取消屏蔽
shutdown 反之,使得芯片不再接收中断
enable 设某个引脚可以接收中断,也就是取消屏蔽
disable 屏蔽某个引脚,例如,如果屏蔽0那么时钟中断就不再发生
ack 当CPU收到来自中断芯片的中断信号,给相应的引脚的处理,这个各种情况下 (8259, APIC电平,边沿)的处理都不相同
end 在CPU处理完某个引脚产生的中断后,对中断芯片(模块)的操作。
irqaction
将一个硬件处理函数挂到相应的处理队列上去(当然首先要生成一个irqaction结构):


-----------------------------------------------------

int request_irq(unsigned int irq,
void (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags,
const char * devname,
void *dev_id)
-----------------------------------------------------


参数说明在源文件里说得非常清楚。
handler是硬件处理函数,在下面的代码中可以看得很清楚:

---------------------------------------------

do {
status |= action->;flags;
action->;handler(irq, action->;dev_id, regs);
action = action->;next;
} while (action);

---------------------------------------------


第二个参数就是action的dev_id,这个参数非常灵活,可以派各种用处。而且要保证的是,这个dev_id在这个处理链中是唯一的,否则删除会遇到麻烦。

第三个参数是在entry.S中压入的各个积存器的值。

它的大致流程是:

1.在slab中分配一个irqaction,填上必需的数据

以下在函数setup_irq中。

2.找到它的irq对应的结构irq_desc

3.看它是否想对随机数做贡献

4.看这个结构上是否已经挂了其它处理函数了,如果有,则必须确保它本身和这个队列上所有的处理函数都是可共享的(由于传递性,只需判断一个就可以了)

5.挂到队列最后

6.如果这个irq_desc只有它一个irqaction,那么还要进行一些初始化工作

7在proc/下面登记 register_irq_proc(irq)(这个我不太明白)

将一个处理函数取下:

void free_irq(unsigned int irq, void *dev_id)

首先在队列里找到这个处理函数(严格的说是irqaction),主要靠dev_id来匹配,这时dev_id的唯一性就比较重要了。

将它从队列里剔除。

如果这个中断号没有处理函数了,那么禁止这个中断号上再产生中断:

if (!desc->;action) {
desc->;status |= IRQ_DISABLED;
desc->;handler->;shutdown(irq);
}

如果其它CPU在运行这个处理函数,要等到它运行完了,才释放它:

#ifdef CONFIG_SMP

/* Wait to make sure it's not being used on another CPU */
while (desc->;status & IRQ_INPROGRESS)
barrier();
#endif

kfree(action);

do_IRQ
asmlinkage unsigned int do_IRQ(struct pt_regs regs)

1.首先取中断号,并且获取对应的irq_desc:

int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code */
int cpu = smp_processor_id();
irq_desc_t *desc = irq_desc + irq;

2.对中断芯片(模块)应答:

desc->;handler->;ack(irq);

3.修改它的状态(注:这些状态我觉得只有在SMP下才有意义):

status = desc->;status & ~(IRQ_REPLAY | IRQ_WAITING);
status |= IRQ_PENDING; /* we _want_ to handle it */

IRQ_REPLAY是指如果被禁止的中断号上又产生了中断,这个中断是不会被处理的,当这个中断号被允许产生中断时,会将这个未被处理的中断转为IRQ_REPLAY。

IRQ_WAITING 探测用,探测时,会将所有没有挂处理函数的中断号上设置IRQ_WAITING,如果这个中断号上有中断产生,就把这个状态去掉,因此,我们就可以知道哪些中断引脚上产生过中断了。

IRQ_PENDING , IRQ_INPROGRESS是为了确保:

同一个中断号的处理程序不能重入

不能丢失这个中断号的下一个处理程序

具体的说,当内核在运行某个中断号对应的处理程序(链)时,状态会设置成IRQ_INPROGRESS。如果在这期间,同一个中断号上又产生了中断,并且传给CPU,那么当内核打算再次运行这个中断号对应的处理程序(链)时,发现已经有一个实例在运行了,就将这下一个中断标注为IRQ_PENDING, 然后返回。这个已在运行的实例结束的时候,会查看是否期间有同一中断发生了,是则再次执行一遍。

这些状态的操作不是在什么情况下都必须的,事实上,一个CPU,用8259芯片,无论即使是开中断,也不会发生中断重入的情况,因为在这期间,内核把同一中断屏蔽掉了。

多个CPU比较复杂,因为CPU由Local APIC,每个都有自己的中断,但是它们可能调用同一个函数,比如时钟中断,每个CPU都可能产生,它们都会调用时钟中断处理函数。

从I/O APIC传过来的中断,如果是电平触发,也不会,因为在结束发出EOI前,这个引脚上是不接收中断信号。如果是边沿触发,要么是开中断,要么I/O APIC选择不同的CPU,在这两种情况下,会有重入的可能。

/*
* If the IRQ is disabled for whatever reason, we cannot
* use the action we have.
*/

action = NULL;
if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
action = desc->;action;
status &= ~IRQ_PENDING; /* we commit to handling */
status |= IRQ_INPROGRESS; /* we are handling it *//*进入执行状态*/
}

desc->;status = status;

/*
* If there is no IRQ handler or it was disabled, exit early.
Since we set PENDING, if another processor is handling
a different instance of this same irq, the other processor
will take care of it.
*/

if (!action)
goto out;/*要么该中断没有处理函数;要么被禁止运行(IRQ_DISABLE);要么有一个实例已经在运行了*/

/*
* Edge triggered interrupts need to remember
* pending events.
* This applies to any hw interrupts that allow a second
* instance of the same irq to arrive while we are in do_IRQ
* or in the handler. But the code here only handles the _second_
* instance of the irq, not the third or fourth. So it is mostly
* useful for irq hardware that does not mask cleanly in an
* SMP environment.
*/

for (; {
spin_unlock(&desc->;lock);
handle_IRQ_event(irq, &regs, action);/*执行函数链*/
spin_lock(&desc->;lock);

if (!(desc->;status & IRQ_PENDING))/*发现期间有中断,就再次执行*/
break;
desc->;status &= ~IRQ_PENDING;
}

desc->;status &= ~IRQ_INPROGRESS;/*退出执行状态*/

out:
/*
* The ->;end() handler has to deal with interrupts which got
* disabled while the handler was running.
*/

desc->;handler->;end(irq);/*给中断芯片一个结束的操作,一般是允许再次接收中断*/
spin_unlock(&desc->;lock);

if (softirq_active(cpu) & softirq_mask(cpu))
do_softirq();/*执行软中断*/
return 1;
}






[目录]

--------------------------------------------------------------------------------


软中断

软中断softirq
softirq简介
    提出softirq的机制的目的和老版本的底半部分的目的是一致的,都是将某个中断处理的一部分任务延迟到后面去执行。
    Linux内核中一共可以有32个softirq,每个softirq实际上就是指向一个函数。当内核执行softirq(do_softirq),就对这32个softirq进行轮询:

    (1)是否该softirq被定义了,并且允许被执行?
    (2)是否激活了(也就是以前有中断要求它执行)?

    如果得到肯定的答复,那么就执行这个softirq指向的函数。

    值得一提的是,无论有多少个CPU,内核一共只有32个公共的softirq,但是每个CPU可以执行不同的softirq,可以禁止/起用不同的softirq,可以激活不同的softirq,因此,可以说,所有CPU有相同的例程,但是

    每个CPU却有自己完全独立的实例。

    对(1)的判断是通过考察irq_stat[ cpu ].mask相应的位得到的。这里面的cpu指的是当前指令所在的cpu.在一开始,softirq被定义时,所有的cpu的掩码mask都是一样的。但是在实际运行中,每个cpu上运行的程序可以根据自己的需要调整。

    对(2)的判断是通过考察irq_stat[ cpu ].active相应的位得到的.

    虽然原则上可以任意定义每个softirq的函数,Linux内核为了进一步加强延迟中断功能,提出了tasklet的机制。tasklet实际上也就是一个函数。在第0个softirq的处理函数tasklet_hi_action中,我们可以看到,当执行这个函数的时候,会依次执行一个链表上所有的tasklet.

    我们大致上可以把softirq的机制概括成:

    内核依次对32个softirq轮询,如果遇到一个可以执行并且需要的softirq,就执行对应的函数,这些函数有可能又会执行一个函数队列。当执行完这个函数队列后,才会继续询问下一个softirq对应的函数。

挂上一个软中断

void open_softirq(int nr, void (*action)(struct softirq_action*), void *data)
{
unsigned long flags;
int i;

spin_lock_irqsave(&softirq_mask_lock, flags);
softirq_vec[nr].data = data;
softirq_vec[nr].action = action;

for (i=0; i<NR_CPUS; i++)
softirq_mask(i) |= (1<<nr);
spin_unlock_irqrestore(&softirq_mask_lock, flags);
}

    其中对每个CPU的softirq_mask都标注一下,表明这个softirq被定义了。

tasklet

    在这个32个softirq中,有的softirq的函数会依次执行一个队列中的tasklet
    tasklet其实就是一个函数。它的结构如下:

struct tasklet_struct
{
struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long);
unsigned long data;
};

    next 用于将tasklet串成一个队列
    state 表示一些状态,后面详细讨论
    count 用来禁用(count = 1 )或者启用( count = 0 )这个tasklet.因为一旦一个tasklet被挂到队列里,如果没有这个机制,它就一定会被执行。 这个count算是一个事后补救措施,万一挂上了不想执行,就可以把它置1。
    func 即为所要执行的函数。
    data 由于可能多个tasklet调用公用函数,因此用data可以区分不同tasklet.

如何将一个tasklet挂上


首先要初始化一个tasklet,填上相应的参数

void tasklet_init(struct tasklet_struct *t,
void (*func)(unsigned long), unsigned long data)
{
t->;func = func;
t->;data = data;
t->;state = 0;
atomic_set(&t->;count, 0);
}

    然后调用schedule函数,注意,下面的函数仅仅是将这个tasklet挂到 TASKLET_SOFTIRQ对应的软中断所执行的tasklet队列上去, 事实上,还有其它的软中断,比如HI_SOFTIRQ,会执行其它的tasklet队列,如果要挂上,那么就要调用tasklet_hi_schedule(). 如果你自己写的softirq执行一个tasklet队列,那么你需要自己写类似下面的函数。

static inline void tasklet_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {
int cpu = smp_processor_id();
unsigned long flags;

local_irq_save(flags);
/**/ t->;next = tasklet_vec[cpu].list;
/**/ tasklet_vec[cpu].list = t;

__cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
local_irq_restore(flags);
}
}

这个函数中/**/标注的句子用来挂接上tasklet,

    __cpu_raise_softirq用来激活TASKLET_SOFTIRQ,这样,下次执行do_softirq就会执行这个TASKLET_SOFTIRQ软中断了

__cpu_raise_softirq定义如下:


static inline void __cpu_raise_softirq(int cpu, int nr)
{
softirq_active(cpu) |= (1<<nr);
}

tasklet的运行方式

    我们以tasklet_action为例,来说明tasklet运行机制。事实上,还有一个函数tasklet_hi_action同样也运行tasklet队列。

    首先值得注意的是,我们前面提到过,所有的cpu共用32个softirq,但是同一个softirq在不同的cpu上执行的数据是独立的,基于这个原则,tasklet_vec对每个cpu都有一个,每个cpu都运行自己的tasklet队列。

    当执行一个tasklet队列时,内核将这个队列摘下来,以list为队列头,然后从list的下一个开始依次执行。这样做达到什么效果呢?在执行这个队列时,这个队列的结构是静止的,如果在运行期间,有中断产生,并且往这个队列里添加tasklet的话,将填加到tasklet_vec[cpu].list中, 注意这个时候,这个队列里的任何tasklet都不会被执行,被执行的是list接管的队列。

见/*1*//*2/之间的代码。事实上,在一个队列上同时添加和运行也是可行的,没这个简洁。

-----------------------------------------------------------------

static void tasklet_action(struct softirq_action *a)
{
int cpu = smp_processor_id();
struct tasklet_struct *list;

/*1*/ local_irq_disable();
list = tasklet_vec[cpu].list;
tasklet_vec[cpu].list = NULL;

/*2*/ local_irq_enable();
while (list != NULL) {
struct tasklet_struct *t = list;
list = list->;next;

/*3*/ if (tasklet_trylock(t)) {
if (atomic_read(&t->;count) == 0) {
clear_bit(TASKLET_STATE_SCHED, &t->;state);
t->;func(t->;data);
/*
* talklet_trylock() uses test_and_set_bit that imply
* an mb when it returns zero, thus we need the explicit
* mb only here: while closing the critical section.
*/

#ifdef CONFIG_SMP
/*?*/ smp_mb__before_clear_bit();
#endif
tasklet_unlock(t);
continue;
}
tasklet_unlock(t);
}
/*4*/ local_irq_disable();
t->;next = tasklet_vec[cpu].list;
tasklet_vec[cpu].list = t;
__cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
/*5*/ local_irq_enable();
}
}

-------------------------------------------------------------
    /*3*/看其它cpu是否还有同一个tasklet在执行,如果有的话,就首先将这个tasklet重新放到tasklet_vec[cpu].list指向的预备队列(见/*4*/~/*5*/),而后跳过这个tasklet.

    这也就说明了tasklet是不可重入的,以防止两个相同的tasket访问同样的变量而产生竞争条件(race condition)

tasklet的状态

    在tasklet_struct中有一个属性state,用来表示tasklet的状态:
tasklet的状态有3个:

1.当tasklet被挂到队列上,还没有执行的时候,是 TASKLET_STATE_SCHED
2.当tasklet开始要被执行的时候,是 TASKLET_STATE_RUN
其它时候,则没有这两个位的设置

其实还有另一对状态,禁止或允许,tasklet_struct中用count表示,用下面的函数操作

-----------------------------------------------------

static inline void tasklet_disable_nosync(struct tasklet_struct *t)
{
atomic_inc(&t->;count);
}

static inline void tasklet_disable(struct tasklet_struct *t)
{
tasklet_disable_nosync(t);
tasklet_unlock_wait(t);
}

static inline void tasklet_enable(struct tasklet_struct *t)
{
atomic_dec(&t->;count);
}

-------------------------------------------------------


下面来验证1,2这两个状态:

当被挂上队列时:
    首先要测试它是否已经被别的cpu挂上了,如果已经在别的cpu挂上了,则不再将它挂上,否则设置状态为TASKLET_STATE_SCHED

static inline void tasklet_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->;state)) {

... ...

}

    为什么要这样做?试想,如果一个tasklet已经挂在一队列上,内核将沿着这个队列一个个执行,现在如果又被挂到另一个队列上,那么这个tasklet的指针指向另一个队列,内核就会沿着它走到错误的队列中去了。


tasklet开始执行时:

在tasklet_action中:

------------------------------------------------------------
while (list != NULL) {
struct tasklet_struct *t = list;

/*0*/ list = list->;next;

/*1*/ if (tasklet_trylock(t)) {

/*2*/ if (atomic_read(&t->;count) == 0) {

/*3*/ clear_bit(TASKLET_STATE_SCHED, &t->;state);

t->;func(t->;data);
/*
* talklet_trylock() uses test_and_set_bit that imply
* an mb when it returns zero, thus we need the explicit
* mb only here: while closing the critical section.
*/

#ifdef CONFIG_SMP
smp_mb__before_clear_bit();
#endif
/*4*/ tasklet_unlock(t);
continue;
}

---------------------------------------------------------------


1 看是否是别的cpu上这个tasklet已经是 TASKLET_STATE_RUN了,如果是就跳过这个tasklet

2 看这个tasklet是否被允许运行?

3 清除TASKLET_STATE_SCHED,为什么现在清除,它不是还没有从队列上摘下来吗?事实上,它的指针已经不再需要的,它的下一个tasklet已经被list记录了(/*0*/)。这样,如果其它cpu把它挂到其它的队列上去一点影响都没有。

4 清除TASKLET_STATE_RUN标志

    1和4确保了在所有cpu上,不可能运行同一个tasklet,这样在一定程度上确保了tasklet对数据操作是安全的,但是不要忘了,多个tasklet可能指向同一个函数,所以仍然会发生竞争条件。

    可能会有疑问:假设cpu 1上已经有tasklet 1挂在队列上了,cpu2应该根本挂不上同一个tasklet 1,怎么会有tasklet 1和它发生重入的情况呢?

    答案就在/*3*/上,当cpu 1的tasklet 1已经不是TASKLET_STATE_SCHED,而它还在运行,这时cpu2完全有可能挂上同一个tasklet 1,而且使得它试图运行,这时/*1*/的判断就起作用了。

软中断的重入

    一般情况下,在硬件中断处理程序后都会试图调用do_softirq执行软中断,但是如果发现现在已经有中断在运行,或者已经有软中断在运行,则

    不再运行自己调用的中断。也就是说,软中断是不能进入硬件中断部分的,并且软中断在一个cpu上是不可重入的,或者说是串行化的(serialize)

    其目的是避免访问同样的变量导致竞争条件的出现。在开中断的中断处理程序中不允许调用软中断可能是希望这个中断处理程序尽快结束。

这是由do_softirq中的

if (in_interrupt())
return;

保证的.

其中,

#define in_interrupt() ({ int __cpu = smp_processor_id(); \

(local_irq_count(__cpu) + local_bh_count(__cpu) != 0); })

前者local_irq_count(_cpu):

    当进入硬件中断处理程序时,handle_IRQ_event中的irq_enter(cpu, irq)会将它加1,表明又进入一个硬件中断

    退出则调用irq_exit(cpu, irq)

后者local_bh_count(__cpu) :

    当进入软中断处理程序时,do_softirq中的local_bh_disable()会将它加1,表明处于软中断中

local_bh_disable();

一个例子:

    当内核正在执行处理定时器的软中断时,这期间可能会发生多个时钟中断,这些时钟中断的处理程序都试图再次运行处理定时器的软中断,但是由于 已经有个软中断在运行了,于是就放弃返回。

软中断调用时机

最直接的调用:

    当硬中断执行完后,迅速调用do_softirq来执行软中断(见下面的代码),这样,被硬中断标注的软中断能得以迅速执行。当然,不是每次调用都成功的,见前面关于重入的帖子。
----------------------------------

论坛徽章:
0
发表于 2003-04-21 13:17 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

内存

    内存管理系统是操作系统中最为重要的部分,因为系统的物理内存总是少于系统所需要的内存数量。虚拟内存就是为了克服这个矛盾而采用的策略。系统的虚拟内存通过在各个进程之间共享内存而使系统看起来有多于实际内存的内存容量。
    虚拟内存可以提供以下的功能:

*广阔的地址空间。
    系统的虚拟内存可以比系统的实际内存大很多倍。

*进程的保护。
    系统中的每一个进程都有自己的虚拟地址空间。这些虚拟地址空间是完全分开的,这样一个进程的运行不会影响其他进程。并且,硬件上的虚拟内存机制是被保护的,内存不能被写入,这样可以防止迷失的应用程序覆盖代码的数据。

*内存映射。
    内存映射用来把文件映射到进程的地址空间。在内存映射中,文件的内容直接连接到进程的虚拟地址空间。

*公平的物理内存分配。
    内存管理系统允许系统中每一个运行的进程都可以公平地得到系统的物理内存。

*共享虚拟内存。
    虽然虚拟内存允许进程拥有自己单独的虚拟地址空间,但有时可能会希望进程共享内存。

linux仅仅使用四个段

两个代表 (code 和 data/stack)是内核空间从[0xC000 0000] (3 GB)到[0xFFFF FFFF] (4 GB)
两个代表 (code 和 data/stack)是用户空间从[0] (0 GB) 到 [0xBFFF FFFF] (3 GB)

                               __
   4 GB--->;|                |    |
           |     Kernel     |    |  内核空间 (Code + Data/Stack)
           |                |  __|
   3 GB--->;|----------------|  __
           |                |    |
           |                |    |
   2 GB--->;|                |    |
           |     Tasks      |    |  用户空间 (Code + Data/Stack)
           |                |    |
   1 GB--->;|                |    |
           |                |    |
           |________________|  __|
0x00000000
          内核/用户 线性地址


linux可以使用3层页表映射,例如在高级的I64服务器上,但是i386体系结构下只有2层有实际意义:

   ------------------------------------------------------------------
                              线性地址
   ------------------------------------------------------------------
        \___/                 \___/                     \_____/

     PD 偏移                 PF 偏移                  Frame 偏移
     [10 bits]              [10 bits]                 [12 bits]
          |                     |                          |
          |                     |     -----------          |
          |                     |     |  Value  |----------|---------
          |     |         |     |     |---------|   /|\    |        |
          |     |         |     |     |         |    |     |        |
          |     |         |     |     |         |    | Frame 偏移   |
          |     |         |     |     |         |   \|/             |
          |     |         |     |     |---------|<------            |
          |     |         |     |     |         |      |            |
          |     |         |     |     |         |      | x 4096     |
          |     |         |  PF 偏移  |_________|-------            |
          |     |         |       /|\ |         |                   |
      PD 偏移   |_________|-----   |  |         |          _________|
            /|\ |         |    |   |  |         |          |
             |  |         |    |  \|/ |         |         \|/
_____       |  |         |    ------>;|_________|   物理地址
|     |     \|/ |         |    x 4096 |         |
| CR3 |-------->;|         |           |         |
|_____|         | ....... |           | ....... |
                |         |           |         |

                  页目录表                 页表

                       Linux i386 分页

    注意内核(仅仅内核)线性空间就等于内核物理空间,所以如下:

            ________________ _____
           |   其他内核数据 |___  |  |                |
           |----------------|   | |__|                |
           |      内核      |\  |____|  实际的其他    |
  3 GB --->;|----------------| \      |   内核数据     |
           |                |\ \     |                |
           |              __|_\_\____|__   Real       |
           |      Tasks     |  \ \   |     Tasks      |
           |              __|___\_\__|__   Space      |
           |                |    \ \ |                |
           |                |     \ \|----------------|
           |                |      \ |  实际内核空间  |
           |________________|       \|________________|

                 逻辑地址                  物理地址


[内存实时分配]

|copy_mm
   |allocate_mm = kmem_cache_alloc
      |__kmem_cache_alloc
         |kmem_cache_alloc_one
            |alloc_new_slab
               |kmem_cache_grow
                  |kmem_getpages
                     |__get_free_pages
                        |alloc_pages
                           |alloc_pages_pgdat
                              |__alloc_pages
                                 |rmqueue
                                 |reclaim_pages

·copy_mm [kernel/fork.c]
·allocate_mm [kernel/fork.c]
·kmem_cache_alloc [mm/slab.c]
·__kmem_cache_alloc
·kmem_cache_alloc_one
·alloc_new_slab
·kmem_cache_grow
·kmem_getpages
·__get_free_pages [mm/page_alloc.c]
·alloc_pages [mm/numa.c]
·alloc_pages_pgdat
·__alloc_pages [mm/page_alloc.c]
·rm_queue
·reclaim_pages [mm/vmscan.c]

[内存交换线程kswapd]

|kswapd
   |// initialization routines
   |for (; { // Main loop
      |do_try_to_free_pages
      |recalculate_vm_stats
      |refill_inactive_scan
      |run_task_queue
      |interruptible_sleep_on_timeout // we sleep for a new swap request
   |}


·kswapd [mm/vmscan.c]
·do_try_to_free_pages
·recalculate_vm_stats [mm/swap.c]
·refill_inactive_scan [mm/vmswap.c]
·run_task_queue [kernel/softirq.c]
·interruptible_sleep_on_timeout [kernel/sched.c]


[内存交换机制:出现内存不足的Exception]

| Page Fault Exception
| cause by all these conditions:
|   a-) User page
|   b-) Read or write access
|   c-) Page not present
|
|
----------->; |do_page_fault
                 |handle_mm_fault
                    |pte_alloc
                       |pte_alloc_one
                          |__get_free_page = __get_free_pages
                             |alloc_pages
                                |alloc_pages_pgdat
                                   |__alloc_pages
                                      |wakeup_kswapd // We wake up kernel thread kswapd


·do_page_fault [arch/i386/mm/fault.c]
·handle_mm_fault [mm/memory.c]
·pte_alloc
·pte_alloc_one [include/asm/pgalloc.h]
·__get_free_page [include/linux/mm.h]
·__get_free_pages [mm/page_alloc.c]
·alloc_pages [mm/numa.c]
·alloc_pages_pgdat
·__alloc_pages
·wakeup_kswapd [mm/vmscan.c]

[目录]

--------------------------------------------------------------------------------


内存管理子系统导读from aka

    我的目标是‘导读’,提供linux内存管理子系统的整体概念,同时给出进一步深入研究某个部分时的辅助信息(包括代码组织,文件和主要函数的意义和一些参考文档)。之所以采取这种方式,是因为我本人在阅读代码的过程中,深感“读懂一段代码容易,把握整体思想却极不容易”。而且,在我写一些内核代码时,也觉得很多情况下,不一定非得很具体地理解所有内核代码,往往了解它的接口和整体工作原理就够了。当然,我个人的能力有限,时间也很不够,很多东西也是近期迫于讲座压力临时学的:),内容难免偏颇甚至错误,欢迎大家指正。
存储层次结构和x86存储管理硬件(MMU)

    这里假定大家对虚拟存储,段页机制有一定的了解。主要强调一些很重要的或者容易误解的概念。

存储层次

    高速缓存(cache) --〉 主存(main memory) ---〉 磁盘(disk)

    理解存储层次结构的根源:CPU速度和存储器速度的差距。

    层次结构可行的原因:局部性原理。

LINUX的任务:

    减小footprint,提高cache命中率,充分利用局部性。

    实现虚拟存储以满足进程的需求,有效地管理内存分配,力求最合理地利用有限的资源。

参考文档:

    《too little,too small》by Rik Van Riel, Nov. 27,2000.

    以及所有的体系结构教材:)


MMU的作用

    辅助操作系统进行内存管理,提供虚实地址转换等硬件支持。


x86的地址

    逻辑地址: 出现在机器指令中,用来制定操作数的地址。段:偏移

    线性地址:逻辑地址经过分段单元处理后得到线性地址,这是一个32位的无符号整数,可用于定位4G个存储单元。

    物理地址:线性地址经过页表查找后得出物理地址,这个地址将被送到地址总线上指示所要访问的物理内存单元。

LINUX: 尽量避免使用段功能以提高可移植性。如通过使用基址为0的段,使逻辑地址==线性地址。


x86的段

    保护模式下的段:选择子+描述符。不仅仅是一个基地址的原因是为了提供更多的信息:保护、长度限制、类型等。描述符存放在一张表中(GDT或LDT),选择子可以认为是表的索引。段寄存器中存放的是选择子,在段寄存器装入的同时,描述符中的数据被装入一个不可见的寄存器以便cpu快速访问。(图)P40

    专用寄存器:GDTR(包含全局描述附表的首地址),LDTR(当前进程的段描述附表首地址),TSR(指向当前进程的任务状态段)


LINUX使用的段:

    __KERNEL_CS: 内核代码段。范围 0-4G。可读、执行。DPL=0。

    __KERNEL_DS:内核代码段。范围 0-4G。可读、写。DPL=0。

    __USER_CS:内核代码段。范围 0-4G。可读、执行。DPL=3。

    __USER_DS:内核代码段。范围 0-4G。可读、写。DPL=3。

    TSS(任务状态段):存储进程的硬件上下文,进程切换时使用。(因为x86硬件对TSS有一定支持,所有有这个特殊的段和相应的专用寄存器。)

    default_ldt:理论上每个进程都可以同时使用很多段,这些段可以存储在自己的ldt段中,但实际linux极少利用x86的这些功能,多数情况下所有进程共享这个段,它只包含一个空描述符。

    还有一些特殊的段用在电源管理等代码中。

    (在2.2以前,每个进程的ldt和TSS段都存在GDT中,而GDT最多只能有8192项,因此整个系统的进程总数被限制在4090左右。2。4里不再把它们存在GDT中,从而取消了这个限制。)

    __USER_CS和__USER_DS段都是被所有在用户态下的进程共享的。注意不要把这个共享和进程空间的共享混淆:虽然大家使用同一个段,但通过使用不同的页表由分页机制保证了进程空间仍然是独立的。


x86的分页机制

    x86硬件支持两级页表,奔腾pro以上的型号还支持Physical address Extension Mode和三级页表。所谓的硬件支持包括一些特殊寄存器(cr0-cr4)、以及CPU能够识别页表项中的一些标志位并根据访问情况做出反应等等。如读写Present位为0的页或者写Read/Write位为0的页将引起CPU发出page fault异常,访问完页面后自动设置accessed位等。

    linux采用的是一个体系结构无关的三级页表模型(如图),使用一系列的宏来掩盖各种平台的细节。例如,通过把PMD看作只有一项的表并存储在pgd表项中(通常pgd表项中存放的应该是pmd表的首地址),页表的中间目录(pmd)被巧妙地‘折叠’到页表的全局目录(pgd),从而适应了二级页表硬件。

TLB

    TLB全称是Translation Look-aside Buffer,用来加速页表查找。这里关键的一点是:如果操作系统更改了页表内容,它必须相应的刷新TLB以使CPU不误用过时的表项。


Cache

    Cache 基本上是对程序员透明的,但是不同的使用方法可以导致大不相同的性能。linux有许多关键的地方对代码做了精心优化,其中很多就是为了减少对cache不必要的污染。如把只有出错情况下用到的代码放到.fixup section,把频繁同时使用的数据集中到一个cache行(如struct task_struct),减少一些函数的footprint,在slab分配器里头的slab coloring等。

    另外,我们也必须知道什么时候cache要无效:新map/remap一页到某个地址、页面换出、页保护改变、进程切换等,也即当cache对应的那个地址的内容或含义有所变化时。当然,很多情况下不需要无效整个cache,只需要无效某个地址或地址范围即可。实际上,

    intel在这方面做得非常好用,cache的一致性完全由硬件维护。

    关于x86处理器更多信息,请参照其手册:Volume 3: Architecture and Programming Manual


8. Linux 相关实现

    这一部分的代码和体系结构紧密相关,因此大多位于arch子目录下,而且大量以宏定义和inline函数形式存在于头文件中。以i386平台为例,主要的文件包括:

page.h

    页大小、页掩码定义。PAGE_SIZE,PAGE_SHIFT和PAGE_MASK。

    对页的操作,如清除页内容clear_page、拷贝页copy_page、页对齐page_align

    还有内核虚地址的起始点:著名的PAGE_OFFSET和相关的内核中虚实地址转换的宏__pa和__va.。

    virt_to_page从一个内核虚地址得到该页的描述结构struct page *.我们知道,所有物理内存都由一个memmap数组来描述。这个宏就是计算给定地址的物理页在这个数组中的位置。另外这个文件也定义了一个简单的宏检查一个页是不是合法:VALID_PAGE(page)。如果page离memmap数组的开始太远以至于超过了最大物理页面应有的距离则是不合法的。

    比较奇怪的是页表项的定义也放在这里。pgd_t,pmd_t,pte_t和存取它们值的宏xxx_val


pgtable.h pgtable-2level.h pgtable-3level.h

    顾名思义,这些文件就是处理页表的,它们提供了一系列的宏来操作页表。pgtable-2level.h和pgtable-2level.h则分别对应x86二级、三级页表的需求。首先当然是表示每级页表有多少项的定义不同了。而且在PAE模式下,地址超过32位,页表项pte_t用64位来表示(pmd_t,pgd_t不需要变),一些对整个页表项的操作也就不同。共有如下几类:

    ·[pte/pmd/pgd]_ERROR 出措时要打印项的取值,64位和32位当然不一样。
    ·set_[pte/pmd/pgd] 设置表项值
    ·pte_same 比较 pte_page 从pte得出所在的memmap位置
    ·pte_none 是否为空。
    ·__mk_pte 构造pte

    pgtable.h的宏太多,不再一一解释。实际上也比较直观,通常从名字就可以看出宏的意义来了。pte_xxx宏的参数是pte_t,而ptep_xxx的参数是pte_t *。2.4 kernel在代码的clean up方面还是作了一些努力,不少地方含糊的名字变明确了,有些函数的可读性页变好了。

    pgtable.h里除了页表操作的宏外,还有cache和tlb刷新操作,这也比较合理,因为他们常常是在页表操作时使用。这里的tlb操作是以__开始的,也就是说,内部使用的,真正对外接口在pgalloc.h中(这样分开可能是因为在SMP版本中,tlb的刷新函数和单机版本区别较大,有些不再是内嵌函数和宏了)。

pgalloc.h

    包括页表项的分配和释放宏/函数,值得注意的是表项高速缓存的使用:

    pgd/pmd/pte_quicklist

    内核中有许多地方使用类似的技巧来减少对内存分配函数的调用,加速频繁使用的分配。如buffer cache中buffer_head和buffer,vm区域中最近使用的区域。

    还有上面提到的tlb刷新的接口

segment.h

    定义 __KERNEL_CS[DS] __USER_CS[DS]

参考:

    《Understanding the Linux Kernel》的第二章给了一个对linux 的相关实现的简要描述,


物理内存的管理。

    2.4中内存管理有很大的变化。在物理页面管理上实现了基于区的伙伴系统(zone based buddy system)。区(zone)的是根据内存的不同使用类型划分的。对不同区的内存使用单独的伙伴系统(buddy system)管理,而且独立地监控空闲页等。

    (实际上更高一层还有numa支持。Numa(None Uniformed Memory Access)是一种体系结构,其中对系统里的每个处理器来说,不同的内存区域可能有不同的存取时间(一般是由内存和处理器的距离决定)。而一般的机器中内存叫做DRAM,即动态随机存取存储器,对每个单元,CPU用起来是一样快的。NUMA中访问速度相同的一个内存区域称为一个Node,支持这种结构的主要任务就是要尽量减少Node之间的通信,使得每个处理器要用到的数据尽可能放在对它来说最快的Node中。2.4内核中node&#0;相应的数据结构是pg_data_t,每个node拥有自己的memmap数组,把自己的内存分成几个zone,每个zone再用独立的伙伴系统管理物理页面。Numa要对付的问题还有很多,也远没有完善,就不多说了)

基于区的伙伴系统的设计&#0;物理页面的管理

    内存分配的两大问题是:分配效率、碎片问题。一个好的分配器应该能够快速的满足各种大小的分配要求,同时不能产生大量的碎片浪费空间。伙伴系统是一个常用的比较好的算法。(解释:TODO)

引入区的概念是为了区分内存的不同使用类型(方法?),以便更有效地利用它们。

    2.4有三个区:DMA, Normal, HighMem。前两个在2.2实际上也是由独立的buddy system管理的,但2.2中还没有明确的zone的概念。DMA区在x86体系结构中通常是小于16兆的物理内存区,因为DMA控制器只能使用这一段的内存。而HighMem是物理地址超过某个值(通常是约900M)的高端内存。其他的是Normal区内存。由于linux实现的原因,高地址的内存不能直接被内核使用,如果选择了CONFIG_HIGHMEM选项,内核会使用一种特殊的办法来使用它们。(解释:TODO)。HighMem只用于page cache和用户进程。这样分开之后,我们将可以更有针对性地使用内存,而不至于出现把DMA可用的内存大量给无关的用户进程使用导致驱动程序没法得到足够的DMA内存等情况。此外,每个区都独立地监控本区内存的使用情况,分配时系统会判断从哪个区分配比较合算,综合考虑用户的要求和系统现状。2.4里分配页面时可能会和高层的VM代码交互(分配时根据空闲页面的情况,内核可能从伙伴系统里分配页面,也可能直接把已经分配的页收回&#0;reclaim等),代码比2.2复杂了不少,要全面地理解它得熟悉整个VM工作的机理。

整个分配器的主要接口是如下函数(mm.h page_alloc.c):

struct page * alloc_pages(int gfp_mask, unsigned long order) 根据gftp_mask的要求,从适当的区分配2^order个页面,返回第一个页的描述符。

#define alloc_page(gfp_mask) alloc_pages(gfp_mask,0)

unsigned long __get_free_pages((int gfp_mask, unsigned long order) 工作同alloc_pages,但返回首地址。

#define __get_free_page(gfp_mask) __get_free_pages(gfp_mask,0)

get_free_page 分配一个已清零的页面。

__free_page(s) 和free_page(s)释放页面(一个/多个)前者以页面描述符为参数,后者以页面地址为参数。

    关于Buddy算法,许多教科书上有详细的描述,第六章对linux的实现有一个很好的介绍。关于zone base buddy更多的信息,可以参见Rik Van Riel 写的" design for a zone based memory allocator"。这个人是目前linuxmm的维护者,权威啦。这篇文章有一点过时了,98年写的,当时还没有HighMem,但思想还是有效的。还有,下面这篇文章分析2.4的实现代码:

http://home.earthlink.net/~jknapka/linux-mm/zonealloc.html。


Slab--连续物理区域管理

    单单分配页面的分配器肯定是不能满足要求的。内核中大量使用各种数据结构,大小从几个字节到几十上百k不等,都取整到2的幂次个页面那是完全不现实的。2.0的内核的解决方法是提供大小为2,4,8,16,...,131056字节的内存区域。需要新的内存区域时,内核从伙伴系统申请页面,把它们划分成一个个区域,取一个来满足需求;如果某个页面中的内存区域都释放了,页面就交回到伙伴系统。这样做的效率不高。有许多地方可以改进:

    不同的数据类型用不同的方法分配内存可能提高效率。比如需要初始化的数据结构,释放后可以暂存着,再分配时就不必初始化了。
    内核的函数常常重复地使用同一类型的内存区,缓存最近释放的对象可以加速分配和释放。
    对内存的请求可以按照请求频率来分类,频繁使用的类型使用专门的缓存,很少使用的可以使用类似2.0中的取整到2的幂次的通用缓存。
    使用2的幂次大小的内存区域时高速缓存冲突的概率较大,有可能通过仔细安排内存区域的起始地址来减少高速缓存冲突。
    缓存一定数量的对象可以减少对buddy系统的调用,从而节省时间并减少由此引起的高速缓存污染。

2.2实现的slab分配器体现了这些改进思想。

主要数据结构

接口:

kmem_cache_create/kmem_cache_destory

kmem_cache_grow/kmem_cache_reap 增长/缩减某类缓存的大小

kmem_cache_alloc/kmem_cache_free 从某类缓存分配/释放一个对象

kmalloc/kfree 通用缓存的分配、释放函数。

相关代码(slab.c)。

相关参考:

http://www.lisoleg.net/lisoleg/memory/slab.pdf :Slab发明者的论文,必读经典。

第六章,具体实现的详细清晰的描述。

AKA2000年的讲座也有一些大虾讲过这个主题,请访问aka主页:www.aka.org.cn


vmalloc/vfree &#0;物理地址不连续,虚地址连续的内存管理

    使用kernel页表。文件vmalloc.c,相对简单。


2.4内核的VM(完善中。。。)

进程地址空间管理

    创建,销毁。

mm_struct, vm_area_struct, mmap/mprotect/munmap

page fault处理,demand page, copy on write


相关文件:

include/linux/mm.h:struct page结构的定义,page的标志位定义以及存取操作宏定义。struct vm_area_struct定义。mm子系统的函数原型说明。

include/linux/mman.h:和vm_area_struct的操作mmap/mprotect/munmap相关的常量宏定义。

memory.c:page fault处理,包括COW和demand page等。

对一个区域的页表相关操作:

zeromap_page_range: 把一个范围内的页全部映射到zero_page

remap_page_range:给定范围的页重新映射到另一块地址空间。

zap_page_range:把给定范围内的用户页释放掉,页表清零。

mlock.c: mlock/munlock系统调用。mlock把页面锁定在物理内存中。

mmap.c::mmap/munmap/brk系统调用。

mprotect.c: mprotect系统调用。

    前面三个文件都大量涉及vm_area_struct的操作,有很多相似的xxx_fixup的代码,它们的任务是修补受到影响的区域,保证vm_area_struct 链表正确。


交换

目的:

    使得进程可以使用更大的地址空间。同时容纳更多的进程。

任务:

    选择要换出的页

    决定怎样在交换区中存储页面

    决定什么时候换出

kswapd内核线程:每10秒激活一次

    任务:当空闲页面低于一定值时,从进程的地址空间、各类cache回收页面

    为什么不能等到内存分配失败再用try_to_free_pages回收页面?原因:

    有些内存分配时在中断或异常处理调用,他们不能阻塞

    有时候分配发生在某个关键路径已经获得了一些关键资源的时候,因此它不能启动IO。如果不巧这时所有的路径上的内存分配都是这样,内存就无法释放。

kreclaimd 从inactive_clean_list回收页面,由__alloc_pages唤醒。

相关文件:

mm/swap.c kswapd使用的各种参数以及操作页面年龄的函数。

mm/swap_file.c 交换分区/文件的操作。

mm/page_io.c 读或写一个交换页。

mm/swap_state.c swap cache相关操作,加入/删除/查找一个swap cache等。

mm/vmscan.c 扫描进程的vm_area,试图换出一些页面(kswapd)。

reclaim_page:从inactive_clean_list回收一个页面,放到free_list

    kclaimd被唤醒后重复调用reclaim_page直到每个区的

zone->;free_pages>;= zone->;pages_low

    page_lauder:由__alloc_pages和try_to_free_pages等调用。通常是由于freepages + inactive_clean_list的页太少了。功能:把inactive_dirty_list的页面转移到inactive_clean_list,首先把已经被写回文件或者交换区的页面(by bdflush)放到inactive_clean_list,如果freepages确实短缺,唤醒bdflush,再循环一遍把一定数量的dirty页写回。

    关于这几个队列(active_list,inactive_dirty_list,inactive_clean_list)的逻辑,请参照:文档:RFC: design for new VM,可以从lisoleg的文档精华获得。

page cache、buffer cache和swap cache

    page cache:读写文件时文件内容的cache,大小为一个页。不一定在磁盘上连续。

    buffer cache:读写磁盘块的时候磁盘块内容的cache,buffer cache的内容对应磁盘上一个连续的区域,一个buffer cache大小可能从512(扇区大小)到一个页。

    swap cache: 是page cache的子集。用于多个进程共享的页面被换出到交换区的情况。

page cache 和 buffer cache的关系

    本质上是很不同的,buffer cache缓冲磁盘块内容,page cache缓冲文件的一页内容。page cache写回时会使用临时的buffer cache来写磁盘。

bdflush: 把dirty的buffer cache写回磁盘。通常只当dirty的buffer太多或者需要更多的buffer而内存开始不足时运行。page_lauder也可能唤醒它。

kupdate: 定时运行,把写回期限已经到了的dirty buffer写回磁盘。

    2.4的改进:page cache和buffer cache耦合得更好了。在2.2里,磁盘文件的读使用page cache,而写绕过page cache,直接使用buffer cache,因此带来了同步的问题:写完之后必须使用update_vm_cache()更新可能有的page cache。2.4中page cache做了比较大的改进,文件可以通过page cache直接写了,page cache优先使用high memory。而且,2.4引入了新的对象:file address space,它包含用来读写一整页数据的方法。这些方法考虑到了inode的更新、page cache处理和临时buffer的使用。page cache和buffer cache的同步问题就消除了。原来使用inode+offset查找page cache变成通过file address space+offset;原来struct page 中的inode成员被address_space类型的mapping成员取代。这个改进还使得匿名内存的共享成为可能(这个在2.2很难实现,许多讨论过)。

虚存系统则从freeBSD借鉴了很多经验,针对2.2的问题作了巨大的调整。

    文档:RFC: design for new VM不可不读。

    由于时间仓促,新vm的很多细微之处我也还没来得及搞清楚。先大致罗列一下,以后我将进一步完善本文,争取把问题说清楚。另外,等这学期考试过后,我希望能为大家提供一些详细注释过的源代码。





[目录]

--------------------------------------------------------------------------------


用户态

    用户空间存取内核空间,具体的实现方法要从两个方面考虑,先是用户进程,需要调用mmapp来将自己的一段虚拟空间映射到内核态分配的物理内存;然后内核空间需要重新设置用户进程的这段虚拟内存的页表,使它的物理地址指向对应的物理内存。针对linux内核的几种不同的内存分配方式(kmalloc、vmalloc和ioremap),需要进行不同的处理。
一、Linux内存管理概述

这里说一下我的理解,主要从数据结构说。

1、物理内存都是按顺序分成一页一页的,每页用一个page结构来描述。系统所有的物理页 面的page结

构描述就组成了一个数组mem_map。

2、进程的虚拟地址空间用task_struct的域mm来描述,它是一个mm_struct结构,这个结构包包含了指向?

程页目录的指针(pgd_t * pgd)和指向进程虚拟内存区域的指针(struct vm_area_structt * mmap)

3、进程虚拟内存区域具有相同属性的段用结构vm_area_struct描述(简称为VMA)。进程所所有的VMA?


树组织。

4、每个VMA就是一个对象,定义了一组操作,可以通过这组操作来对不同类型的VMA进行不屯 的处理。

例如对vmalloc分配的内存的映射就是通过其中的nopage操作实现的。

二、mmap处理过程

当用户调用mmap的时候,内核进行如下的处理:

1、先在进程的虚拟空间查找一块VMA;

2、将这块VMA去映射

3、如果设备驱动程序或者文件系统的file_operations定义了mmap操作,则调用它

4、将这个VMA插入到进程的VMA链中

file_operations的中定义的mmap方法原型如下:
int (*mmap) (struct file *, struct vm_area_struct *);

其中file是虚拟空间映射到的文件结构,vm_area_struct就是步骤1中找到的VMA。

三、缺页故障处理过程

当访问一个无效的虚拟地址(可能是保护故障,也可能缺页故障等)的时候,就会产生一个个页故障,?

统的处理过程如下:

1、找到这个虚拟地址所在的VMA;

2、如果必要,分配中间页目录表和页表

3、如果页表项对应的物理页面不存在,则调用这个VMA的nopage方法,它返回物理页面的paage描述结构

(当然这只是其中的一种情况)

4、针对上面的情况,将物理页面的地址填充到页表中

当页故障处理完后,系统将重新启动引起故障的指令,然后就可以正常访问了

下面是VMA的方法:
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, innt

write_access);
};

其中缺页函数nopage的address是引起缺页故障的虚拟地址,area是它所在的VMA,write_acccess是存取

属性。

三、具体实现

3.1、对kmalloc分配的内存的映射

对kmalloc分配的内存,因为是一段连续的物理内存,所以它可以简单的在mmap例程中设置汉 页表的物

理地址,方法是使用函数remap_page_range。它的原型如下:

int remap_page_range(unsigned long from, unsigned long phys_addr, unsigned long size,

pgprot_t prot)

其中from是映射开始的虚拟地址。这个函数为虚拟地址空间from和from+size之间的范围构栽 页表;

phys_addr是虚拟地址应该映射到的物理地址;size是被映射区域的大小;prot是保护标志?

remap_page_range的处理过程是对from到form+size之间的每一个页面,查找它所在的页目侣己 页表(

必要时建立页表),清除页表项旧的内容,重新填写它的物理地址与保护域。

remap_page_range可以对多个连续的物理页面进行处理。<<Linux设备驱动程序>;>;指出,

remap_page_range只能给予对保留的页和物理内存之上的物理地址的访问,当对非保留的页页使?

remap_page_range时,缺省的nopage处理控制映射被访问的虚地址处的零页。所以在分配内内存后,就?

对所分配的内存置保留位,它是通过函数mem_map_reserve实现的,它就是对相应物理页面?

PG_reserved标志位。(关于这一点,参见前面的主题为“关于remap_page_range的疑问”档奶致郏?

因为remap_page_range有上面的限制,所以可以用另外一种方式,就是采用和vmalloc分配档哪 存同样

的方法,对缺页故障进行处理。

3.2、对vmalloc分配的内存的映射


3.2.1、vmalloc分配内存的过程

(1)、进行预处理和合法性检查,例如将分配长度进行页面对齐,检查分配长度是否过大?

(2)、以GFP_KERNEL为优先级调用kmalloc分配(GFP_KERNEL用在进程上下文中,所以这里里就限制了?

中断处理程序中调用vmalloc)描述vmalloc分配的内存的vm_struct结构。

(3)、将size加一个页面的长度,使中间形成4K的隔离带,然后在VMALLOC_START和VMALLOOC_END之间

编历vmlist链表,寻找一段自由内存区间,将其地址填入vm_struct结构中

(4)、返回这个地址

vmalloc分配的物理内存并不连续

3.2.2、页目录与页表的定义

typedef struct { unsigned long pte_low; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pgd; } pgd_t;
#define pte_val(x) ((x).pte_low)

3.2.3、常见例程:

(1)、virt_to_phys():内核虚拟地址转化为物理地址
#define __pa(x)  ((unsigned long)(x)-PAGE_OFFSET)
extern inline unsigned long virt_to_phys(volatile void * address)
{
return __pa(address);
}

上面转换过程是将虚拟地址减去3G(PAGE_OFFSET=0XC000000),因为内核空间从3G到3G+实实际内存一?

映射到物理地址的0到实际内存

(2)、phys_to_virt():内核物理地址转化为虚拟地址
#define __va(x)  ((void *)((unsigned long)(x)+PAGE_OFFSET))
extern inline void * phys_to_virt(unsigned long address)
{
return __va(address);
}
virt_to_phys()和phys_to_virt()都定义在include\asm-i386\io.h中

(3)、#define virt_to_page(kaddr) (mem_map + (__pa(kaddr) >;>; PAGE_SHIFT))(内核核2.4?
   #define VALID_PAGE(page) ((page - mem_map) < max_mapnr)(内核2.4)
第一个宏根据虚拟地址,将其转换为相应的物理页面的page描述结构,第二个宏判断页面是是不是在有?

的物理页面内。(这两个宏处理的虚拟地址必须是内核虚拟地址,例如kmalloc返回的地址#?杂?

vmalloc返回的地址并不能这样,因为vmalloc分配的并不是连续的物理内存,中间可能有空空洞?

3.2.4、vmalloc分配的内存的mmap的实现:

对vmalloc分配的内存需要通过设置相应VMA的nopage方法来实现,当产生缺页故障的时候,,会调用VM

的nopage方法,我们的目的就是在nopage方法中返回一个page结构的指针,为此,需要通过过如下步骤?

(1) pgd_offset_k或者 pgd_offset:查找虚拟地址所在的页目录表,前者对应内核空间档男 拟地址

,后者对应用户空间的虚拟地址
#define pgd_offset(mm, address) ((mm)->;pgd+pgd_index(address))
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
对于后者,init_mm是进程0(idle process)的虚拟内存mm_struct结构,所有进程的内核 页表都一样

。在vmalloc分配内存的时候,要刷新内核页目录表,2.4中为了节省开销,只更改了进程0档哪 核页目

录,而对其它进程则通过访问时产生页面异常来进行更新各自的内核页目录

(2)pmd_offset:找到虚拟地址所在的中间页目录项。在查找之前应该使用pgd_none判断适 否存在相

应的页目录项,这些函数如下:
extern inline int pgd_none(pgd_t pgd)  { return 0; }
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}

(3)pte_offset:找到虚拟地址对应的页表项。同样应该使用pmd_none判断是否存在相应档 中间页目

录:
#define pmd_val(x) ((x).pmd)
#define pmd_none(x) (!pmd_val(x))
#define __pte_offset(address) \
  ((address >;>; PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pmd_page(pmd) \
  ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \
  __pte_offset(address))

(4)pte_present和pte_page:前者判断页表对应的物理地址是否有效,后者取出页表中物物理地址对?

的page描述结构
#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
#define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >;>; PAGE_SHIFT))))
#define page_address(page) ((page)->;virtual)



下面的一个DEMO与上面的关系不大,它是做这样一件事情,就是在启动的时候保留一段内存存,然后使?

ioremap将它映射到内核虚拟空间,同时又用remap_page_range映射到用户虚拟空间,这样亮 边都能访

问,通过内核虚拟地址将这段内存初始化串"abcd",然后使用用户虚拟地址读出来。

/************mmap_ioremap.c**************/
#include <linux/module.h>;
#include <linux/kernel.h>;
#include <linux/errno.h>;
#include <linux/mm.h>;
#include <linux/wrapper.h>;  /* for mem_map_(un)reserve */
#include <asm/io.h>;          /* for virt_to_phys */
#include <linux/slab.h>;   /* for kmalloc and kfree */

MODULE_PARM(mem_start,"i";
MODULE_PARM(mem_size,"i";

static int mem_start=101,mem_size=10;
static char * reserve_virt_addr;
static int major;

int mmapdrv_open(struct inode *inode, struct file *file);
int mmapdrv_release(struct inode *inode, struct file *file);
int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma);

static struct file_operations mmapdrv_fops =
{
  owner:   THIS_MODULE,
  mmap:    mmapdrv_mmap,
  open:    mmapdrv_open,
  release: mmapdrv_release,
};


int init_module(void)
{
  if ( ( major = register_chrdev(0, "mmapdrv", &mmapdrv_fops) ) < 0 )
    {
      printk("mmapdrv: unable to register character device\n";
      return (-EIO);
    }
  printk("mmap device major = %d\n",major );

  printk( "high memory physical address 0x%ldM\n",
   virt_to_phys(high_memory)/1024/1024 );

  reserve_virt_addr = ioremap( mem_start*1024*1024,mem_size*1024*1024);
  printk( "reserve_virt_addr = 0x%lx\n", (unsigned long)reserve_virt_addr );
  if ( reserve_virt_addr )
    {
      int i;
      for ( i=0;i<mem_size*1024*1024;i+=4)
{
   reserve_virt_addr = 'a';
   reserve_virt_addr[i+1] = 'b';
   reserve_virt_addr[i+2] = 'c';
   reserve_virt_addr[i+3] = 'd';
}
    }
  else
    {
      unregister_chrdev( major, "mmapdrv" );
      return -ENODEV;
    }

  return 0;
}

/* remove the module */
void cleanup_module(void)
{
  if ( reserve_virt_addr )
    iounmap( reserve_virt_addr );

  unregister_chrdev( major, "mmapdrv" );

  return;
}

int mmapdrv_open(struct inode *inode, struct file *file)
{
  MOD_INC_USE_COUNT;
  return(0);
}

int mmapdrv_release(struct inode *inode, struct file *file)
{
  MOD_DEC_USE_COUNT;
  return(0);
}

int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma)
{
  unsigned long offset = vma->;vm_pgoff<<AGE_SHIFT;
  unsigned long size = vma->;vm_end - vma->;vm_start;

  if ( size >; mem_size*1024*1024 )
    {
      printk("size too big\n";
      return(-ENXIO);
    }

  offset = offset + mem_start*1024*1024;

  /* we do not want to have this area swapped out, lock it */
  vma->;vm_flags |= VM_LOCKED;
  if ( remap_page_range(vma->;vm_start,offset,size,PAGE_SHARED))
    {
      printk("remap page range failed\n";
      return -ENXIO;
    }

  return(0);
}


使用LDD2源码里面自带的工具mapper测试结果如下:

[root@localhost modprg]# insmod mmap_ioremap.mod
mmap device major = 254
high memory physical address 0x100M
reserve_virt_addr = 0xc7038000

[root@localhost modprg]# mknod mmapdrv c 254 0

[root@localhost modprg]# ./mapper mmapdrv 0 1024 | od -Ax -t x1
mapped "mmapdrv" from 0 to 1024
000000 61 62 63 64 61 62 63 64 61 62 63 64 61 62 63 64
*
000400

[root@localhost modprg]#





[目录]

--------------------------------------------------------------------------------


内核页目录的初始化

内核页目录的初始化
内核页目录的初始化

/* swapper_pg_dir is the main page directory, address 0x00101000*/

>;>;>; 内核页目录,第0,1项和第768、767项均为映射到物理内存0-8M的页目录项
>;>;>; 其页表的物理地址是0x00102000和0x00103000,即下面的pg0和pg1所在的位置
>;>;>; (在启动的时候,将内核映像移到0x0010000处)。
>;>;>; 之所以第0,1项与第768和767相同,是因为在开启分页前的线性地址0-8M和开启
>;>;>; 分页之后的3G-3G+8M均映射到相同的物理地址0-8M

/*
* This is initialized to create an identity-mapping at 0-8M (for bootup
* purposes) and another mapping of the 0-8M area at virtual address
* PAGE_OFFSET.
*/
.org 0x1000
ENTRY(swapper_pg_dir)
.long 0x00102007
.long 0x00103007
.fill BOOT_USER_PGD_PTRS-2,4,0
/* default: 766 entries */
.long 0x00102007
.long 0x00103007
/* default: 254 entries */
.fill BOOT_KERNEL_PGD_PTRS-2,4,0

/*
* The page tables are initialized to only 8MB here - the final page
* tables are set up later depending on memory size.
*/
>;>;>; 下面为物理地址0-8M的页表项
>;>;>; 从0x4000到0x2000共2k个页表项,映射0-8M的物理内存

.org 0x2000
ENTRY(pg0)

.org 0x3000
ENTRY(pg1)

/*
* empty_zero_page must immediately follow the page tables ! (The
* initialization loop counts until empty_zero_page)
*/

.org 0x4000
ENTRY(empty_zero_page)

>;>;>; 进程0的页目录指向swapper_pg_dir
#define INIT_MM(name) \
{        \
mmap:  &init_mmap,    \
mmap_avl: NULL,     \
mmap_cache: NULL,     \
pgd:  swapper_pg_dir,   \
mm_users: ATOMIC_INIT(2),   \
mm_count: ATOMIC_INIT(1),   \
map_count: 1,     \
mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem), \
page_table_lock: SPIN_LOCK_UNLOCKED,   \
mmlist:  LIST_HEAD_INIT(name.mmlist), \
}

/*
* paging_init() sets up the page tables - note that the first 8MB are
* already mapped by head.S.
*
* This routines also unmaps the page at virtual kernel address 0, so
* that we can trap those pesky NULL-reference errors in the kernel.
*/
void __init paging_init(void)
{
pagetable_init();

__asm__( "movl %%ecx,%%cr3\n" ::"c"(__pa(swapper_pg_dir)));

。。。。。。。。。。。
}


static void __init pagetable_init (void)
{
unsigned long vaddr, end;
pgd_t *pgd, *pgd_base;
int i, j, k;
pmd_t *pmd;
pte_t *pte, *pte_base;

>;>;>; end虚拟空间的最大值(最大物理内存+3G)
/*
  * This can be zero as well - no problem, in that case we exit
  * the loops anyway due to the PTRS_PER_* conditions.
  */
end = (unsigned long)__va(max_low_pfn*PAGE_SIZE);

pgd_base = swapper_pg_dir;
#if CONFIG_X86_PAE
for (i = 0; i < PTRS_PER_PGD; i++)
  set_pgd(pgd_base + i, __pgd(1 + __pa(empty_zero_page)));
#endif
>;>;>; 内核起始虚拟空间在内核页目录表中的索引
i = __pgd_offset(PAGE_OFFSET);
pgd = pgd_base + i;

>;>;>; #define PTRS_PER_PGD 1024
>;>;>; 对页目录的从768项开始的每一项
for (; i < PTRS_PER_PGD; pgd++, i++) {
>;>;>; vaddr为第i项页目录项所映射的内核空间的起始虚拟地址,PGDIR_SIZE=4M
  vaddr = i*PGDIR_SIZE;
  if (end && (vaddr >;= end))
   break;
#if CONFIG_X86_PAE
  pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
  set_pgd(pgd, __pgd(__pa(pmd) + 0x1));
#else
>;>;>; 对两级映射机制,pmd实际上是pgd
  pmd = (pmd_t *)pgd;
#endif
  if (pmd != pmd_offset(pgd, 0))
   BUG();

  for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {
   vaddr = i*PGDIR_SIZE + j*PMD_SIZE;
   if (end && (vaddr >;= end))
    break;
>;>;>; 假如内核不支持 Page Size Extensions
   if (cpu_has_pse) {
   。。。。。。。。。。
   }
>;>;>; 分配内核页表
   pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
>;>;>; 对每一项页表项
   for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
    vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
    if (end && (vaddr >;= end))
     break;
>;>;>; 将页面的物理地址填入页表项中
    *pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
   }
>;>;>; 将页表的物理地址填入到页目录项中
   set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));
   if (pte_base != pte_offset(pmd, 0))
    BUG();

  }
}

/*
  * Fixed mappings, only the page table structure has to be
  * created - mappings will be set by set_fixmap():

  */
vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
fixrange_init(vaddr, 0, pgd_base);

#if CONFIG_HIGHMEM
。。。。。。。。。。。。
#endif

#if CONFIG_X86_PAE
。。。。。。。。。。。。
#endif
}





[目录]

--------------------------------------------------------------------------------


内核线程页目录的借用

    创建内核线程的时候,由于内核线程没有用户空间,而所有进程的内核页目录都是一样的((某些情况下可能有不同步的情况出现,主要是为了减轻同步所有进程内核页目录的开销,而只是在各个进程要访问内核空间,如果有不同步的情况,然后才进行同步处理),所以创建的内核线程的内核页目录总是借用进程0的内核页目录。
>;>;>; kernel_thread以标志CLONE_VM调用clone系统调用
/*
* Create a kernel thread
*/
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
long retval, d0;

__asm__ __volatile__(
  "movl %%esp,%%esi\n\t"
  "int $0x80\n\t"  /* Linux/i386 system call */
  "cmpl %%esp,%%esi\n\t" /* child or parent? */
  /* Load the argument into eax, and push it.  That way, it does
   * not matter whether the called function is compiled with
   * -mregparm or not.  */
  "movl %4,%%eax\n\t"
  "pushl %%eax\n\t"
  "call *%5\n\t"  /* call fn */
  "movl %3,%0\n\t" /* exit */
  "int $0x80\n"
  "1:\t"
  :"=&a" (retval), "=&S" (d0)
  :"0" (__NR_clone), "i" (__NR_exit),
   "r" (arg), "r" (fn),
   "b" (flags | CLONE_VM)
  : "memory";
return retval;
}

>;>;>; sys_clone->;do_fork->;copy_mm:
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
{
struct mm_struct * mm, *oldmm;
int retval;

。。。。。。。。

tsk->;mm = NULL;
tsk->;active_mm = NULL;

/*
  * Are we cloning a kernel thread?
  *
  * We need to steal a active VM for that..
  */
>;>;>; 如果是内核线程的子线程(mm=NULL),则直接退出,此时内核线程mm和active_mm均为为NULL
oldmm = current->;mm;
if (!oldmm)
  return 0;

>;>;>; 内核线程,只是增加当前进程的虚拟空间的引用计数
if (clone_flags & CLONE_VM) {
  atomic_inc(&oldmm->;mm_users);
  mm = oldmm;
  goto good_mm;
}

。。。。。。。。。。

good_mm:
>;>;>; 内核线程的mm和active_mm指向当前进程的mm_struct结构
tsk->;mm = mm;
tsk->;active_mm = mm;
return 0;

。。。。。。。
}

然后内核线程一般调用daemonize来释放对用户空间的引用:
>;>;>; daemonize->;exit_mm->;_exit_mm:
/*
* Turn us into a lazy TLB process if we
* aren't already..
*/
static inline void __exit_mm(struct task_struct * tsk)
{
struct mm_struct * mm = tsk->;mm;

mm_release();
if (mm) {
  atomic_inc(&mm->;mm_count);
  if (mm != tsk->;active_mm) BUG();
  /* more a memory barrier than a real lock */
  task_lock(tsk);
>;>;>; 释放用户虚拟空间的数据结构
  tsk->;mm = NULL;
  task_unlock(tsk);
  enter_lazy_tlb(mm, current, smp_processor_id());

>;>;>; 递减mm的引用计数并是否为0,是则释放mm所代表的映射
  mmput(mm);
}
}

asmlinkage void schedule(void)
{
。。。。。。。。。
if (!current->;active_mm) BUG();

。。。。。。。。。

prepare_to_switch();
{
  struct mm_struct *mm = next->;mm;
  struct mm_struct *oldmm = prev->;active_mm;
>;>;>; mm = NULL,选中的为内核线程
  if (!mm) {
>;>;>; 对内核线程,active_mm = NULL,否则一定是出错了
   if (next->;active_mm) BUG();
>;>;>; 选中的内核线程active_mm借用老进程的active_mm
   next->;active_mm = oldmm;
   atomic_inc(&oldmm->;mm_count);
   enter_lazy_tlb(oldmm, next, this_cpu);
  } else {
>;>;>; mm != NULL 选中的为用户进程,active_mm必须与mm相等,否则一定是出错了
   if (next->;active_mm != mm) BUG();
   switch_mm(oldmm, mm, next, this_cpu);
  }

>;>;>; prev = NULL ,切换出去的是内核线程
  if (!prev->;mm) {
>;>;>; 设置其 active_mm = NULL 。
   prev->;active_mm = NULL;
   mmdrop(oldmm);
  }
}

}

对内核线程的虚拟空间总结一下:
1、创建的时候:
父进程是用户进程,则mm和active_mm均共享父进程的,然后内核线程一般调用daemonize适头舖m
父进程是内核线程,则mm和active_mm均为NULL
总之,内核线程的mm = NULL;进程调度的时候以此为依据判断是用户进程还是内核线程。

2、进程调度的时候
如果切换进来的是内核线程,则置active_mm为切换出去的进程的active_mm;
如果切换出去的是内核线程,则置active_mm为NULL。




[目录]

--------------------------------------------------------------------------------


用户进程内核页目录的建立

用户进程内核页目录的建立
    在fork一个进程的时候,必须建立进程自己的内核页目录项(内核页目录项要
与用户空间的的页目录放在同一个物理地址连续的页面上,所以不能共享,但
所有进程的内核页表与进程0共享?


3G用户,页目录中一项映射4M的空间(一项页目录1024项页表,每项页表对应1个页面4K)# 即:
#define PGDIR_SHIFT 22
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)

>;>;>; sys_fork->;do_fork->;copy_mm->;mm_init->;pgd_alloc->;get_pgd_slow

#if CONFIG_X86_PAE

。。。。。。。。。。。。。

#else

extern __inline__ pgd_t *get_pgd_slow(void)
{
>;>;>; 分配页目录表(包含1024项页目录),即为一个进程分配的页目录可以映射的空间为10024*4M=4G
pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL);

if (pgd) {
>;>;>; #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
>;>;>; TASK_SIZE为3G大小,USER_PTRS_PER_PGD为用户空间对应的页目录项数目(3G/4M=768?
>;>;>; 将用户空间的页目录项清空
  memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
>;>;>; 将内核页目录表(swapper_pg_dir)的第768项到1023项拷贝到进程的页目录表的第7688项到1023项中
  memcpy(pgd + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER__PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return pgd;
}

#endif




[目录]

--------------------------------------------------------------------------------


内核页目录的同步

内核页目录的同步
    当一个进程在内核空间发生缺页故障的时候,在其处理程序中,就要通过0号进程的页目录览 同步本进程的内核页目录,实际上就是拷贝0号进程的内核页目录到本进程中(内核页表与进程0共享,故不需要复制)。如下:
asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
。。。。。。。。
>;>;>; 缺页故障产生的地址
/* get the address */
__asm__("movl %%cr2,%0":"=r" (address));

tsk = current;

/*
  * We fault-in kernel-space virtual memory on-demand. The
  * 'reference' page table is init_mm.pgd.
  */
>;>;>; 如果缺页故障在内核空间
if (address >;= TASK_SIZE)
  goto vmalloc_fault;

。。。。。。。。。

vmalloc_fault:
{
  /*
   * Synchronize this task's top level page-table
   * with the 'reference' page table.
   */
  int offset = __pgd_offset(address);
  pgd_t *pgd, *pgd_k;
  pmd_t *pmd, *pmd_k;

  pgd = tsk->;active_mm->;pgd + offset;
  pgd_k = init_mm.pgd + offset;

>;>;>; /*
>;>;>;  * (pmds are folded into pgds so this doesnt get actually called,
>;>;>;  * but the define is needed for a generic inline function.)
>;>;>;  */
>;>;>; #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
>;>;>; #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)

>;>;>; 如果本进程的该地址的内核页目录不存在
  if (!pgd_present(*pgd)) {
>;>;>; 如果进程0的该地址处的内核页目录也不存在,则出错
   if (!pgd_present(*pgd_k))
    goto bad_area_nosemaphore;
>;>;>; 复制进程0的该地址的内核页目录到本进程的相应页目录中
   set_pgd(pgd, *pgd_k);
   return;
  }
>;>;>; extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
>;>;>; {
>;>;>;  return (pmd_t *) dir;
>;>;>; }
  pmd = pmd_offset(pgd, address);
  pmd_k = pmd_offset(pgd_k, address);

>;>;>; 对中间页目录,如果是两级页表,下面的几步操作与上面的重复
  if (pmd_present(*pmd) || !pmd_present(*pmd_k))
   goto bad_area_nosemaphore;
  set_pmd(pmd, *pmd_k);
  return;
}


/*
* Switch to real mode and then execute the code
* specified by the code and length parameters.
* We assume that length will aways be less that 100!
*/
void machine_real_restart(unsigned char *code, int length)
{

。。。。。。。。。。。。。

/* Remap the kernel at virtual address zero, as well as offset zero
    from the kernel segment.  This assumes the kernel segment starts at
    virtual address PAGE_OFFSET. */

memcpy (swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
  sizeof (swapper_pg_dir [0]) * KERNEL_PGD_PTRS);


/* Make sure the first page is mapped to the start of physical memory.
    It is normally not mapped, to trap kernel NULL pointer dereferences. */

pg0[0] = _PAGE_RW | _PAGE_PRESENT;

/*
  * Use `swapper_pg_dir' as our page directory.
  */
asm volatile("movl %0,%%cr3": :"r" (__pa(swapper_pg_dir)));




[目录]

--------------------------------------------------------------------------------


mlock代码分析

        系统调用mlock的作用是屏蔽内存中某些用户进程所要求的页。
        mlock调用的语法为:
                int sys_mlock(unsigned long start, size_t len);
初始化为:
        len=(len+(start &~PAGE_MASK)+ ~PAGE_MASK)&AGE_MASK;
start &=PAGE_MASK;
其中mlock又调用do_mlock(),语法为:
int do_mlock(unsigned long start, size_t len,int on);
初始化为:
        len=(len+~PAGE_MASK)&AGE_MASK;
    由mlock的参数可看出,mlock对由start所在页的起始地址开始,长度为len(注:len=(len+(start&~PAGE_MASK)+ ~PAGE_MASK)&AGE_MASK)的内存区域的页进行加锁。
    sys_mlock如果调用成功返回,这其中所有的包含具体内存区域的页必须是常驻内存的,或者说在调用munlock 或 munlockall之前这部分被锁住的页面必须保留在内存。当然,如果调用mlock的进程终止或者调用exec执行其他程序,则这部分被锁住的页面被释放。通过fork()调用所创建的子进程不能够继承由父进程调用mlock锁住的页面。
    内存屏蔽主要有两个方面的应用:实时算法和高度机密数据的处理。实时应用要求严格的分时,比如调度,调度页面是程序执行延时的一个主要因素。保密安全软件经常处理关键字节,比如密码或者密钥等数据结构。页面调度的结果是有可能将这些重要字节写到外存(如硬盘)中去。这样一些黑客就有可能在这些安全软件删除这些在内存中的数据后还能访问部分在硬盘中的数据。        而对内存进行加锁完全可以解决上述难题。
    内存加锁不使用压栈技术,即那些通过调用mlock或者mlockall被锁住多次的页面可以通过调用一次munlock或者munlockall释放相应的页面
    mlock的返回值分析:若调用mlock成功,则返回0;若不成功,则返回-1,并且errno被置位,进程的地址空间保持原来的状态。返回错误代码分析如下:
    ENOMEM:部分具体地址区域没有相应的进程地址空间与之对应或者超出了进程所允许的最大可锁页面。
    EPERM:调用mlock的进程没有正确的优先权。只有root进程才允许锁住要求的页面。
    EINVAL:输入参数len不是个合法的正数。


mlock所用到的主要数据结构和重要常量

1.mm_struct
struct mm_struct {
        int count;
        pgd_t * pgd; /* 进程页目录的起始地址,如图2-3所示 */
        unsigned long context;
        unsigned long start_code, end_code, start_data, end_data;
        unsigned long start_brk, brk, start_stack, start_mmap;
        unsigned long arg_start, arg_end, env_start, env_end;
        unsigned long rss, total_vm, locked_vm;
        unsigned long def_flags;
        struct vm_area_struct * mmap;     /* 指向vma双向链表的指针 */
        struct vm_area_struct * mmap_avl; /* 指向vma AVL树的指针 */
        struct semaphore mmap_sem;
}
start_code、end_code:进程代码段的起始地址和结束地址。
start_data、end_data:进程数据段的起始地址和结束地址。
arg_start、arg_end:调用参数区的起始地址和结束地址。
env_start、env_end:进程环境区的起始地址和结束地址。
rss:进程内容驻留在物理内存的页面总数。


2. 虚存段(vma)数据结构:vm_area_atruct

虚存段vma由数据结构vm_area_atruct(include/linux/mm.h)描述:
struct vm_area_struct {
        struct mm_struct * vm_mm;        /* VM area parameters */
        unsigned long vm_start;
        unsigned long vm_end;
        pgprot_t vm_page_prot;
        unsigned short vm_flags;
/* AVL tree of VM areas per task, sorted by address */
        short vm_avl_height;
        struct vm_area_struct * vm_avl_left;
        struct vm_area_struct * vm_avl_right;
/* linked list of VM areas per task, sorted by address */
        struct vm_area_struct * vm_next;
/* for areas with inode, the circular list inode->;i_mmap */
/* for shm areas, the circular list of attaches */
/* otherwise unused */
        struct vm_area_struct * vm_next_share;
        struct vm_area_struct * vm_prev_share;
/* more */
        struct vm_operations_struct * vm_ops;
        unsigned long vm_offset;
        struct inode * vm_inode;
        unsigned long vm_pte;                        /* shared mem */
};

vm_start;//所对应内存区域的开始地址
vm_end; //所对应内存区域的结束地址
vm_flags; //进程对所对应内存区域的访问权限
vm_avl_height;//avl树的高度
vm_avl_left; //avl树的左儿子
vm_avl_right; //avl树的右儿子
vm_next;// 进程所使用的按地址排序的vm_area链表指针
vm_ops;//一组对内存的操作
    这些对内存的操作是当对虚存进行操作的时候Linux系统必须使用的一组方法。比如说,当进程准备访问某一虚存区域但是发现此区域在物理内存不存在时(缺页中断),就激发某种对内存的操作执行正确的行为。这种操作是空页(nopage)操作。当Linux系统按需调度可执行的页面映象进入内存时就使用这种空页(nopage)操作。
    当一个可执行的页面映象映射到进程的虚存地址时,一组vm_area_struct结构的数据结构(vma)就会生成。每一个vm_area_struct的数据结构(vma)代表可执行的页面映象的一部分:可执行代码,初始化数据(变量),非初始化数据等等。Linux系统可以支持大量的标准虚存操作,当vm_area_struct数据结构(vma)一被创建,它就对应于一组正确的虚存操作。
    属于同一进程的vma段通过vm_next指针连接,组成链表。如图2-3所示,struct mm_struct结构的成员struct vm_area_struct * mmap  表示进程的vma链表的表头。
    为了提高对vma段 查询、插入、删除操作的速度,LINUX同时维护了一个AVL(Adelson-Velskii and Landis)树。在树中,所有的vm_area_struct虚存段均有左指针vm_avl_left指向相邻的低地址虚存段,右指针vm_avl_right指向相邻的高地址虚存段,如图2-5。struct mm_struct结构的成员struct vm_area_struct * mmap_avl表示进程的AVL树的根,vm_avl_height表示AVL树的高度。
    对平衡树mmap_avl的任何操作必须满足平衡树的一些规则:
Consistency and balancing rulesJ(一致性和平衡规则):

tree->;vm_avl_height==1+max(heightof(tree->;vm_avl_left),heightof(
tree->;vm_avl_right))
abs( heightof(tree->;vm_avl_left) - heightof(tree->;vm_avl_right) ) <= 1
foreach node in tree->;vm_avl_left: node->;vm_avl_key <= tree->;vm_avl_key,        foreach node in tree->;vm_avl_right: node->;vm_avl_key >;= tree->;vm_avl_key.
        注:其中node->;vm_avl_key= node->;vm_end

对vma可以进行加锁、加保护、共享和动态扩展等操作。

3.重要常量
    mlock系统调用所用到的重要常量有:PAGE_MASK、PAGE_SIZE、PAGE_SHIFT、RLIMIT_MEMLOCK、VM_LOCKED、 PF_SUPERPRIV等。它们的值分别如下:
        PAGE_SHIFT                        12                                // PAGE_SHIFT determines the page size
        PAGE_SIZE                        0x1000                        //1UL<<AGE_SHIFT
        PAGE_MASK                        ~(PAGE_SIZE-1)        //a very useful constant variable
        RLIMIT_MEMLOCK                8                                //max locked-in-memory address space
        VM_LOCKED                        0x2000                        //8*1024=8192, vm_flags的标志之一。
        PF_SUPERPRIV                0x00000100                //512,


mlock系统调用代码函数功能分析

下面对各个函数的功能作详细的分析((1)和(2)在前面简介mlock时已介绍过,并在后面有详细的程序流程):
suser():如果用户有效(即current->;euid == 0        ),则设置进程标志为root优先权(current->;flags |= PF_SUPERPRIV),并返回1;否则返回0。
find_vma(struct mm_struct * mm, unsigned long addr):输入参数为当前进程的mm、需要加锁的开始内存地址addr。find_vma的功能是在mm的mmap_avl树中寻找第一个满足mm->;mmap_avl->;vm_start<=addr< mm->;mmap_avl->;vm_end的vma,如果成功则返回此vma;否则返回空null。
mlock_fixup(struct vm_area_struct * vma, unsigned long start, unsigned long end, unsigned int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域起始地址和结束地址、需要修改的标志(0:加锁,1:释放锁)。
merge_segments(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr):输入参数为当前进程的mm、需要加锁的开始内存地址start_addr和结束地址end_addr。merge_segments的功能的是尽最大可能归并相邻(即内存地址偏移量连续)并有相同属性(包括vm_inode,vm_pte,vm_ops,vm_flags)的内存段,在这过程中冗余的vm_area_structs被释放,这就要求vm_mmap链按地址大小排序(我们不需要遍历整个表,而只需要遍历那些交叉或者相隔一定连续区域的邻接vm_area_structs)。当然在缺省的情况下,merge_segments是对vm_mmap_avl树进行循环处理,有多少可以合并的段就合并多少。
mlock_fixup_all(struct vm_area_struct * vma, int newflags):输入参数为vm_mmap链中的某个vma、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_all的功能是根据输入参数newflags修改此vma的vm_flags。
mlock_fixup_start(struct vm_area_struct * vma,unsigned long end, int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域结束地址、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_start的功能是根据输入参数end,在内存中分配一个新的new_vma,把原来的vma分成两个部分: new_vma和vma,其中new_vma的vm_flags被设置成输入参数newflags;并且按地址(new_vma->;start和new_vma->;end)大小序列把新生成的new->;vma插入到当前进程mm的mmap链或mmap_avl树中(缺省情况下是插入到mmap_avl树中)。
        注:vma->;vm_offset+= vma->;vm_start-new_vma->;vm_start;
mlock_fixup_end(struct vm_area_struct * vma,unsigned long start, int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域起始地址、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_end的功能是根据输入参数start,在内存中分配一个新的new_vma,把原来的vma分成两个部分:vma和new_vma,其中new_vma的vm_flags被设置成输入参数newflags;并且按地址大小序列把new->;vma插入到当前进程mm的mmap链或mmap_avl树中。
        注:new_vma->;vm_offset= vma->;vm_offset+(new_vma->;vm_start-vma->;vm_start);
mlock_fixup_middle(struct vm_area_struct * vma,unsigned long start, unsigned long end, int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域起始地址和结束地址、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_middle的功能是根据输入参数start、end,在内存中分配两个新vma,把原来的vma分成三个部分:left_vma、vma和right_vma,其中vma的vm_flags被设置成输入参数newflags;并且按地址大小序列把left->;vma和right->;vma插入到当前进程mm的mmap链或mmap_avl树中。
        注:vma->;vm_offset += vma->;vm_start-left_vma->;vm_start;
                right_vma->;vm_offset += right_vma->;vm_start-left_vma->;vm_start;
kmalloc():将在后面3.3中有详细讨论。
insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vmp):输入参数为当前进程的mm、需要插入的vmp。insert_vm_struct的功能是按地址大小序列把vmp插入到当前进程mm的mmap链或mmap_avl树中,并且把vmp插入到vmp->;inode的i_mmap环(循环共享链)中。
avl_insert_neighbours(struct vm_area_struct * new_node,** ptree,** to_the_left,** to_the_right):输入参数为当前需要插入的新vma结点new_node、目标mmap_avl树ptree、新结点插入ptree后它左边的结点以及它右边的结点(左右边结点按mmap_avl中各vma->;vma_end大小排序)。avl_insert_neighbours的功能是插入新vma结点new_node到目标mmap_avl树ptree中,并且调用avl_rebalance以保持ptree的平衡树特性,最后返回new_node左边的结点以及它右边的结点。
avl_rebalance(struct vm_area_struct *** nodeplaces_ptr, int count):输入参数为指向vm_area_struct指针结构的指针数据nodeplaces_ptr[](每个元素表示需要平衡的mmap_avl子树)、数据元素个数count。avl_rebalance的功能是从nodeplaces_ptr[--count]开始直到nodeplaces_ptr[0]循环平衡各个mmap_avl子树,最终使整个mmap_avl树平衡。
down(struct semaphore * sem):输入参数为同步(进入临界区)信号量sem。down的功能根据当前信号量的设置情况加锁(阻止别的进程进入临界区)并继续执行或进入等待状态(等待别的进程执行完成退出临界区并释放锁)。
        down定义在/include/linux/sched.h中:
extern inline void down(struct semaphore * sem)
{
        if (sem->;count <= 0)
                __down(sem);
        sem->;count--;
}
up(struct semaphore * sem)输入参数为同步(进入临界区)信号量sem。up的功能根据当前信号量的设置情况(当信号量的值为负数:表示有某个进程在等待使用此临界区 )释放锁。
        up定义在/include/linux/sched.h中:
extern inline void up(struct semaphore * sem)
{
        sem->;count++;
        wake_up(&sem->;wait);
        }
kfree_s(a,b):kfree_s定义在/include/linux/malloc.h中:#define kfree_s(a,b) kfree(a)。而kfree()将在后面3.3中详细讨论。
avl_neighbours(struct vm_area_struct * node,* tree,** to_the_left,** to_the_right):输入参数为作为查找条件的vma结点node、目标mmap_avl树tree、node左边的结点以及它右边的结点(左右边结点按mmap_avl中各vma->;vma_end大小排序)。avl_ neighbours的功能是根据查找条件node在目标mmap_avl树ptree中找到node左边的结点以及它右边的结点,并返回。
avl_remove(struct vm_area_struct * node_to_delete, ** ptree):输入参数为需要删除的结点node_to_delete和目标mmap_avl树ptree。avl_remove的功能是在目标mmap_avl树ptree中找到结点node_to_delete并把它从平衡树中删除,并且调用avl_rebalance以保持ptree的平衡树特性。
remove_shared_vm_struct(struct vm_area_struct *mpnt):输入参数为需要从inode->;immap环中删除的vma结点mpnt。remove_shared_vm_struct的功能是从拥有vma结点mpnt 的inode->;immap环中删除的该结点。






[目录]

--------------------------------------------------------------------------------


memory.c

    Memory.c中,Linux提供了对虚拟内存操作的若干函数,其中包括对虚拟页的复制、新建页表、清除页表、处理缺页中断等等。

[目录]

--------------------------------------------------------------------------------


copy_page

1.static inline void copy_page(unsigned long from, unsigned long to)
    为了节约内存的使用,在系统中,各进程通常采用共享内存,即不同的进程可以共享同一段代码段或数据段。当某一进程发生对共享的内存发生写操作时,为了不影响其它进程的正常运行,系统将把该内存块复制一份,供需要写操作的进程使用,这就是所谓的copy-on-write机制。copy_page就是提供复制内存功能的函数,它调用C语言中标准的内存操作函数,将首地址为from的一块虚拟内存页复制到首地址为to的空间中。



[目录]

--------------------------------------------------------------------------------


clear_page_tables

2、void clear_page_tables(struct task_struct * tsk)
    clear_page_table的功能是将传入的结构tsk中的pgd页表中的所有项都清零,同时将二级页表所占的空间都释放掉。传入clear_page_tables的是当前进程的tsk结构,取得该进程的一级页目录指针pgd后,采用循环的方式,调用free_one_pgd清除pgd表。表共1024项。在free_one_pgd中,实际执行的功能只调用一次free_one_pmd(在80x86中,由于硬件的限制,只有两级地址映射,故将pmd与pgd合并在一起)。在free_one_pmd中,函数调用pte_free将对应于pmd的二级页表所占的物理空间释放掉(进程代码、数据所用的物理内存在do_munmap释放掉了)并将pmd赋值为零。
    clear_page_table在系统启动一个可执行文件的映象或载入一个动态链接库时被调用。在fs/exec.c中的do_load_elf_binary()或do_load_aout_binary()调用flash_old_exec,后者调用exec_mmap,而exec_mmap调用clear_page_table。其主要功能是当启动一个新的应用程序的时候,将复制的mm_struct中的页表清除干净,并释放掉原有的所有二级页表空间。




[目录]

--------------------------------------------------------------------------------


oom

3、void oom(struct task_struct * task)
    返回出错信息。


[目录]

--------------------------------------------------------------------------------


free_page_tables

4、void free_page_tables(struct mm_struct * mm)
    在free_page_table中,大部分的代码与clear_page_table中的函数一致。所不同的是,该函数在最后调用了pgd_free(page_dir),即不光释放掉二级页表所占的空间,同时还释放一级页目录所占的空间。这是因为free_page_tables被__exit_mm调用,__exit_mm又被do_exit (kernel/kernel.c)调用。当进程中止、系统退出或系统重起时都需要用do_exit(属于进程管理)将所有的进程结束掉。在结束进程过程中 ,将调用free_page_table将进程的空间全部释放掉,当然包括释放进程一级页目录所占的空间。


[目录]

--------------------------------------------------------------------------------


new_page_tables

5、int new_page_tables(struct task_struct * tsk)
    该函数的主要功能是建立新的页目录表,它的主要流程如如下:
    ·调用pgd_alloc()为新的页目录表申请一片4K空间 。
    ·将初始化进程的内存结构中从768项开始到1023项的内容复制给新的页表(所有的进程都共用虚拟空间中 3G~4G的内存,即在核心态时可以访问所有相同的存储空间)。
    ·调用宏SET_PAGE_DIR(include/asm/pgtable.h)将进程控制块tsk->;ts->;CR3的值改为新的页目录表的首地址,同时将CPU中的CR3寄存器的值改为新的页目录表的首地址,从而使新进程进入自己的运行空间。
    ·将tsk->;mm->;pgd改为新的页目录表的首地址。
    ·new_page_tables被copy_mm调用,而copy_mm被copy_mm_do_fork调用,这两个函数都在kernel/fork.c中。同时,new_page_tables也可以在exec_mmap(fs/exec.c)中调用。即新的进程的产生可以通过两种途径,一种是fork,在程序中动态地生成新的进程,这样新进程的页表原始信息利用copy_mm从其父进程中继承而得,另一种是运行一个可执行文件映象,通过文件系统中的exec.c,将映象复制到tsk结构中。两种方法都需要调用new_page_tables为新进程分配页目录表。




[目录]

--------------------------------------------------------------------------------


copy_one_pte

6、static inline void copy_one_pte(pte_t * old_pte, pte_t * new_pte, int cow)
    将原pte页表项复制到new_pte上,其流程如下:
    ·检测old_pte是否在内存中,如不在物理内存中,调用swap_duplicate按old_pte在swap file中的入口地址,将old_pte复制到内存中,同时把old_pte的入口地址赋给new_pte并返回。反之转向3。
获取old_pte对应的物理地址的页号。
    ·根据页号判断old_pte是否为系统保留的,如果为系统保留的,这些页为所有的进程在核心态下使用,用户进程没有写的权利,则只需将old_pte指针直接转赋给new_pte后返回。反之则该pte属于普通内存的,则转向4。
    ·根据传入的C-O-W标志,为old_pte置写保护标志,如果该页是从swap_cache中得来的,将old_pte页置上“dirty”标志。将old_pte赋值给new_pte。
    ·将mem_map结构中关于物理内存使用进程的个数的数值count加1。



[目录]

--------------------------------------------------------------------------------


copy_pte_range

7、static inline int copy_pte_range(pmd_t *dst_pmd, pmd_t *src_pmd,
unsigned long address, unsigned long size, int cow)
    通过循环调用copy_one_pte将从源src_pmd中以地址address开始的长度为size的空间复制给dst_pmd中。如dst_pmd中还未分配地址为address的页表项,则先给三级页表pte表分配4K空间。(每调用一次copy_one_pte复制4K空间。在一次copy_pte_range中最多可复制4M空间)。




[目录]

--------------------------------------------------------------------------------


copy_pmd_range

8、static inline int copy_pmd_range(pgd_t *dst_pgd, pgd_t *src_pgd,
unsigned long address, unsigned long size, int cow)
    通过循环调用copy_pte_range将从源src_pgd中以地址address开始的长度为size的空间复制给dst_pgd中。如dst_pgd中还未分配地址为address的页表项,则在一级(同时也是二级)页表中给对应的pmd分配目录项。


[目录]

--------------------------------------------------------------------------------


copy_page_range

9、int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
                        struct vm_area_struct *vma)
    该函数的主要功能是将某个任务或进程的vma块复制给另一个任务或进程。其工作机制是循环调用copy_pmd_range,将vma块中的所有虚拟空间复制到对应的虚拟空间中。在做复制之前,必须确保新任务对应的被复制的虚拟空间中必须都为零。copy_page_range按dup_mmap()->;copy_mm()->;do_fork()的顺序被调用(以上三个函数均在kernel/fork.c中)。当进程被创建的时候,需要从父进程处复制所有的虚拟空间,copy_page_range完成的就是这个任务。


[目录]

--------------------------------------------------------------------------------


free_pte

9、static inline void free_pte(pte_t page)
    虚存页page如在内存中,且不为系统的保留内存,调用free_page将其释放掉(如在系统保留区中,则为全系统共享,故不能删除)。
    如page在swap file中,调用swap_free()将其释放。


[目录]

--------------------------------------------------------------------------------


forget_pte

10、static inline void forget_pte(pte_t page)
    如page不为空,调用free_pte将其释放。


[目录]

--------------------------------------------------------------------------------


zap_pte_range

11、static inline void zap_pte_range(pmd_t * pmd, unsigned long address,
unsigned long size)
    zap为zero all pages的缩写。该函数的作用是将在pmd中从虚拟地址address开始,长度为size的内存块通过循环调用pte_clear将其页表项清零,调用free_pte将所含空间中的物理内存或交换空间中的虚存页释放掉。在释放之前,必须检查从address开始长度为size的内存块有无越过PMD_SIZE.(溢出则可使指针逃出0~1023的区间)。


[目录]

--------------------------------------------------------------------------------


zap_pmd_range

12、static inline void zap_p

论坛徽章:
0
发表于 2003-04-21 13:18 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

进程

一  进程调度
    进程的状态([include/linux.h]):

TASK_RUNNING, it means that it is in the "Ready List"
TASK_INTERRUPTIBLE, task waiting for a signal or a resource (sleeping)
TASK_UNINTERRUPTIBLE, task waiting for a resource (sleeping), it is in same "Wait Queue"
TASK_ZOMBIE, task child without father
TASK_STOPPED, task being debugged

       ______________     CPU Available     ______________
      |              |  ---------------->;  |              |
      | TASK_RUNNING |                     | Real Running |
      |______________|  <----------------  |______________|
                           CPU Busy
            |   /|\
Waiting for |    | Resource
Resource   |    | Available
           \|/   |
    ______________________
   |                      |
   | TASK_INTERRUPTIBLE / |
   | TASK-UNINTERRUPTIBLE |
   |______________________|

                     Main Multitasking Flow

    从系统内核的角度看来,一个进程仅仅是进程控制表(process table)中的一项。进程控制表中的每一项都是一个task_struct 结构,而task_struct 结构本身是在include/linux/sched.h中定义的。在task_struct结构中存储各种低级和高级的信息,包括从一些硬件设备的寄存器拷贝到进程的工作目录的链接点。

    进程控制表既是一个数组,又是一个双向链表,同时又是一个树。其物理实现是一个包括多个指针的静态数组。此数组的长度保存在include/linux/tasks.h 定义的常量NR_TASKS中,其缺省值为128,数组中的结构则保存在系统预留的内存页中。链表是由next_task 和prev_task两个指针实现的,而树的实现则比较复杂。

    系统启动后,内核通常作为某一个进程的代表。一个指向task_struct的全局指针变量current用来记录正在运行的进程。变量current只能由kernel/sched.c中的进程调度改变。当系统需要查看所有的进程时,则调用for_each_task,这将比系统搜索数组的速度要快得多。

二、用户进程和内核线程

    某一个进程只能运行在用户方式(user mode)或内核方式(kernel mode)下。用户程序运行在用户方式下,而系统调用运行在内核方式下。在这两种方式下所用的堆栈不一样:用户方式下用的是一般的堆栈,而内核方式下用的是固定大小的堆栈(一般为一个内存页的大小)

    尽管linux是一个宏内核系统,内核线程依然存在,以便并行地处理一些内核的“家务室”。这些任务不占用USER memory(用户空间),而仅仅使用KERNEL memory。和其他内核模块一样,它们也在高级权限(i386系统中的RING 0)下工作作。内核线程是被kernel_thread [arch/i386/kernel/process]创建的,它又通过调用著名的clone系统调用[arch/i386/kernel/process.c] (类似fork系统调用的所有功能都是由它最终实现):

int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
        long retval, d0;

        __asm__ __volatile__(
                "movl %%esp,%%esi\n\t"
                "int $0x80\n\t"         /* Linux/i386 system call */
                "cmpl %%esp,%%esi\n\t"  /* child or parent? */
                "je 1f\n\t"             /* parent - jump */
                /* Load the argument into eax, and push it.  That way, it does
                 * not matter whether the called function is compiled with
                 * -mregparm or not.  */
                "movl %4,%%eax\n\t"
                "pushl %%eax\n\t"
                "call *%5\n\t"          /* call fn */
                "movl %3,%0\n\t"        /* exit */
                "int $0x80\n"
                "1:\t"
                :"=&a" (retval), "=&S" (d0)
                :"0" (__NR_clone), "i" (__NR_exit),
                 "r" (arg), "r" (fn),
                 "b" (flags | CLONE_VM)
                : "memory";
        return retval;
}

    一旦调用,我们就有了一个新的任务(Task) (一般PID都很小, 例如2,3,等) 等待一个响应很慢的资源,例如swap或者usb事件,以便同步。下面是一些最常用的内核线程(你可以用ps x命令):

PID      COMMAND
1        init
2        keventd
3        kswapd
4        kreclaimd
5        bdflush
6        kupdated
7        kacpid
67        khubd

     init内核线程也是启动以后最初的进程。 它会调用其它用户模式的任务,(/etc/inittab)例如控制台守护进程(daemons), tty守护进程以及网络守护进程(rc脚本)。

下面是一个典型的内核线程kswapd [mm/vmscan.c].
kswapd是被clone()建立的 [arch/i386/kernel/process.c]''

|do_initcalls
   |kswapd_init
      |kernel_thread
         |syscall fork (in assembler)

·do_initcalls [init/main.c]
·kswapd_init [mm/vmscan.c]
·kernel_thread [arch/i386/kernel/process.c]

三 进程创建,运行和消失

    Linux系统使用系统调用fork( )来创建一个进程,使用exit( )来结束进程。fork( )和exit( )的源程序保存在kernel/fork.c and kernel/exit.c中。fork( )的主要任务是初始化要创建进程的数据结构,其主要的步骤有:

1)申请一个空闲的页面来保存task_struct。
2)查找一个空的进程槽(find_empty_process( ))。
3)为kernel_stack_page申请另一个空闲的内存页作为堆栈。
4)将父进程的LDT表拷贝给子进程。
5)复制父进程的内存映射信息。
6)管理文件描述符和链接点。

|sys_fork
   |do_fork
      |alloc_task_struct
         |__get_free_pages
       |p->;state = TASK_UNINTERRUPTIBLE
       |copy_flags
       |p->;pid = get_pid
       |copy_files
       |copy_fs
       |copy_sighand
       |copy_mm // should manage CopyOnWrite (I part)
          |allocate_mm
          |mm_init
             |pgd_alloc ->; get_pgd_fast
                |get_pgd_slow
          |dup_mmap
             |copy_page_range
                |ptep_set_wrprotect
                   |clear_bit // set page to read-only
          |copy_segments // For LDT
       |copy_thread
          |childregs->;eax = 0
          |p->;thread.esp = childregs // child fork returns 0
          |p->;thread.eip = ret_from_fork // child starts from fork exit
       |retval = p->;pid // parent fork returns child pid
       |SET_LINKS // insertion of task into the list pointers
       |nr_threads++ // Global variable
       |wake_up_process(p) // Now we can wake up just created child
       |return retval

·sys_fork [arch/i386/kernel/process.c]
·do_fork [kernel/fork.c]
·alloc_task_struct [include/asm/processor.c]
·__get_free_pages [mm/page_alloc.c]
·get_pid [kernel/fork.c]
·copy_files
·copy_fs
·copy_sighand
·copy_mm
·allocate_mm
·mm_init
·pgd_alloc ->; get_pgd_fast [include/asm/pgalloc.h]
·get_pgd_slow
·dup_mmap [kernel/fork.c]
·copy_page_range [mm/memory.c]
·ptep_set_wrprotect [include/asm/pgtable.h]
·clear_bit [include/asm/bitops.h]
·copy_segments [arch/i386/kernel/process.c]
·copy_thread
·SET_LINKS [include/linux/sched.h]
·wake_up_process [kernel/sched.c]

    撤消一个进程可能稍微复杂些,因为撤消子进程必须通知父进程。另外,使用kill( )也可以结束一个进程。sys_kill( )、sys_wait( )和sys_exit( )都保存在文件exit.c中。

    使用fork ( )创建一个进程后,程序的两个拷贝都在运行。通常一个拷贝使用exec ( )调用另一个拷贝。系统调用exec ( )负责定位可执行文件的二进制代码,并负责装入和运行。Linux系统中的exec ( )通过使用linux_binfmt结构支持多种二进制格式。每种二进制格式都代表可执行代码和链接库。linux _binfmt结构种包含两个指针,一个指向装入可执行代码的函数,另一个指向装入链接库的函数。

    Unix系统提供给程序员6种调用exec( ) 的方法。其中的5种是作为库函数实现,而sys_execve( )是由系统内核实现的。它执行一个十分简单的任务:装入可执行文件的文件头,并试图执行它。如果文件的头两个字节是#! ,那么它就调用在文件第一行中所指定的解释器,否则,它将逐个尝试注册的二进制格式。

[目录]

--------------------------------------------------------------------------------


信号

struct semaphore {
        atomic_t count; 进程抓取semaphore时减1
        int sleepers; 抓取semaphore失败时增1
        wait_queue_head_t wait; semaphore的等待队列
};
        down(&sem) 编绎成:
        movl $sem,% ecx        通过寄存器ecx向__down函数传递sem指针
        decl sem
        js 2f 如果为负值,表示semaphore已被占用,执行__down_failed过程
1:
由于出现semaphore竞争的可能性比较小,将分支代码转移到.text.lock段,以缩短正常的指令路径.
.section .text.lock,"ax"
2:        call __down_failed
        jmp 1b
.previous
        ...

        up(&sem) 编绎成:

        movl $sem,% ecx
        incl sem
        jle 2f 如果小于或等于0,表示该semaphore有进程在等待,就去调用__up_wakeup
1:
.section .text.lock,"ax"
2:        call __up_wakeup
        jmp 1b
.previous
        ...
__down_failed:
        pushl % eax
        pushl % edx
        pushl % ecx ; eax,edx,ecx是3个可用于函数参数的寄存器
        call __down
        popl % ecx
        popl % edx
        popl % eax
        ret
__up_wakeup:
        pushl % eax
        pushl % edx
        pushl % ecx
        call __up
        popl % ecx
        popl % edx
        popl % eax
        ret
; semaphore.c
void __down(struct semaphore * sem)
{
        struct task_struct *tsk = current;
        DECLARE_WAITQUEUE(wait, tsk);
        tsk->;state = TASK_UNINTERRUPTIBLE;
        add_wait_queue_exclusive(&sem->;wait, &wait);
        // 将当前进程加入到该semaphore的等待队列中

        spin_lock_irq(&semaphore_lock);
        sem->;sleepers++;
        for (; {
                int sleepers = sem->;sleepers;

                /*
                * Add "everybody else" into it. They aren't
                * playing, because we own the spinlock.
                */

                // atomic_add_negative(int i,atomic_t *v)将i + v->;counter相加,
                // 结果为负返回1,否则返回0
                if (!atomic_add_negative(sleepers - 1, &sem->;count)) {
                // 如果(sleepers - 1 + sem->;count.counter)非负,则说明
                // semaphore已经被释放,可以返回
                        sem->;sleepers = 0;
                        break;
                }
                sem->;sleepers = 1;        /* us - see -1 above */

                spin_unlock_irq(&semaphore_lock);
                // 当semaphore被up()唤醒时,schedule()返回
                schedule();
                // 虽然已线程被up恢复,但为防止碰巧又有一个线程获得了semaphore,
                // 因此将它们放在循环体中
                tsk->;state = TASK_UNINTERRUPTIBLE;
                spin_lock_irq(&semaphore_lock);
        }
        spin_unlock_irq(&semaphore_lock);
        // 该进程获得了semaphore,将它从等待队列中删除
        remove_wait_queue(&sem->;wait, &wait);
        tsk->;state = TASK_RUNNING;
        // 为什么这里要调用wake_up,是因为调用它没有副作用从而防止潜在的死锁吗?
        wake_up(&sem->;wait);
}
void __up(struct semaphore *sem)
{
扩展为
__wake_up_common(&sem->;wait,TASK_UNINTERRUPTIBLE|TASK_INTERRUPTIBLE,1,0);
唤醒队列中第1个进程,即将第1个进程放入运行队列
        wake_up(&sem->;wait);
}
; sched.c
static inline void __wake_up_common (wait_queue_head_t *q, unsigned int
mode,
                                     int nr_exclusive, const int sync)
{
        struct list_head *tmp, *head;
        struct task_struct *p;
        unsigned long flags;

        if (!q)
                goto out;

        wq_write_lock_irqsave(&q->;lock, flags);

#if WAITQUEUE_DEBUG
        CHECK_MAGIC_WQHEAD(q);
#endif

        head = &q->;task_list;
#if WAITQUEUE_DEBUG
        if (!head->;next || !head->;prev)
                WQ_BUG();
#endif
        tmp = head->;next;
        while (tmp != head) {
                unsigned int state;
                wait_queue_t *curr = list_entry(tmp, wait_queue_t,
task_list);
                tmp = tmp->;next;

#if WAITQUEUE_DEBUG
                CHECK_MAGIC(curr->;__magic);
#endif
                p = curr->;task;
                state = p->;state;
                if (state & mode) {
#if WAITQUEUE_DEBUG
                        curr->;__waker = (long)__builtin_return_address(0);
#endif
                        if (sync)
                                wake_up_process_synchronous(p);
                        else
                                wake_up_process(p);
                        if ((curr->;flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
                                break;
                }
        }
        wq_write_unlock_irqrestore(&q->;lock, flags);
out:
        return;
}
; sched.c
inline void wake_up_process(struct task_struct * p)
{
        unsigned long flags;

        /*
        * We want the common case fall through straight, thus the goto.
        */
        spin_lock_irqsave(&runqueue_lock, flags);
        p->;state = TASK_RUNNING;
        if (task_on_runqueue(p))
                goto out;
        add_to_runqueue(p);
        reschedule_idle(p);
out:
        spin_unlock_irqrestore(&runqueue_lock, flags);
}
; sched.c
static inline void wake_up_process_synchronous(struct task_struct * p)
{
        unsigned long flags;

        /*
        * We want the common case fall through straight, thus the goto.
        */
        spin_lock_irqsave(&runqueue_lock, flags);
        p->;state = TASK_RUNNING;
        if (task_on_runqueue(p))
                goto out;
        add_to_runqueue(p);
out:
        spin_unlock_irqrestore(&runqueue_lock, flags);
}
; sched.h
static inline int task_on_runqueue(struct task_struct *p)
{
        return (p->;run_list.next != NULL);
}
; sched.c
static inline void add_to_runqueue(struct task_struct * p)
{
        list_add(&p->;run_list, &runqueue_head);
        nr_running++;
}
static LIST_HEAD(runqueue_head);

; fork.c
void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *
wait)
{
        unsigned long flags;

        wq_write_lock_irqsave(&q->;lock, flags);
        wait->;flags = WQ_FLAG_EXCLUSIVE;
        __add_wait_queue_tail(q, wait);
        wq_write_unlock_irqrestore(&q->;lock, flags);
}
; wait.h
static inline void __add_wait_queue_tail(wait_queue_head_t *head,
                                                wait_queue_t *new)
{
#if WAITQUEUE_DEBUG
        if (!head || !new)
                WQ_BUG();
        CHECK_MAGIC_WQHEAD(head);
        CHECK_MAGIC(new->;__magic);
        if (!head->;task_list.next || !head->;task_list.prev)
                WQ_BUG();
#endif
        list_add_tail(&new->;task_list, &head->;task_list);
}
正执行调度的函数是schedule(void),它选择一个最合适的进程执行,并且真正进行上下文切换,
使得选中的进程得以执行。而reschedule_idle(struct task_struct *p)的作用是为进程选择
一个合适的CPU来执行,如果它选中了某个CPU,则将该CPU上当前运行进程的need_resched标志
置为1,然后向它发出一个重新调度的处理机间中断,使得选中的CPU能够在中断处理返回时执行
schedule函数,真正调度进程p在CPU上执行。在schedule()和reschedule_idle()中调用了goodness()
函数。goodness()函数用来衡量一个处于可运行状态的进程值得运行的程度。此外,在schedule()
函数中还调用了schedule_tail()函数;在reschedule_idle()函数中还调用了reschedule_idle_slow()。





[目录]

--------------------------------------------------------------------------------


sched.c

|schedule
   |do_softirq // manages post-IRQ work
   |for each task
      |calculate counter
   |prepare_to__switch // does anything
   |switch_mm // change Memory context (change CR3 value)
   |switch_to (assembler)
      |SAVE ESP
      |RESTORE future_ESP
      |SAVE EIP
      |push future_EIP *** push parameter as we did a call
         |jmp __switch_to (it does some TSS work)
         |__switch_to()
          ..
         |ret *** ret from call using future_EIP in place of call address
      new_task

/*
* 'sched.c' is the main kernel file. It contains scheduling primitives
* (sleep_on, wakeup, schedule etc) as well as a number of simple system
* call functions (type getpid(), which just extracts a field from
* current-task
*/
#include
#include
#include
#include
#include
#include
#include
#define LATCH (1193180/HZ)
extern void mem_use(void);
extern int timer_interrupt(void);
extern int system_call(void);
union task_union {
struct task_struct task;
char stack[PAGE_SIZE];
};
static union task_union init_task = {INIT_TASK,};
long volatile jiffies=0;
long startup_time=0;
struct task_struct *current = &(init_task.task), *last_task_used_math =
NULL;
struct task_struct * task[NR_TASKS] = {&(init_task.task), };
long user_stack [ PAGE_SIZE>;>;2 ] ;
struct {
long * a;
short b;
} stack_start = { & user_stack [PAGE_SIZE>;>;2] , 0x10 };
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*/
void math_state_restore() @@协处理器状态保存
{
if (last_task_used_math)
__asm__("fnsave %0"::"m" (last_task_used_math->;tss.i387));
if (current->;used_math)
__asm__("frstor %0"::"m" (current->;tss.i387));
else {
__asm__("fninit":;
current->;used_math=1;
}
last_task_used_math=current;
}
/*
* 'schedule()' is the scheduler function. This is GOOD CODE! There
* probably won't be any reason to change this, as it should work well
* in all circumstances (ie gives IO-bound processes good response etc).
* The one thing you might take a look at is the signal-handler code
here.
*
* NOTE!! Task 0 is the 'idle' task, which gets called when no other
* tasks can run. It can not be killed, and it cannot sleep. The 'state'
* information in task[0] is never used.
*/
void schedule(void)
{
int i,next,c;
struct task_struct ** p;
/* check alarm, wake up any interruptible tasks that have got a signal
*/
for(p = &LAST_TASK ; p >; &FIRST_TASK ; --p)
if (*p) {
if ((*p)->;alarm && (*p)->;alarm < jiffies) {
@@??
(*p)->;signal |= (1<<(SIGALRM-1));@@14-1
(*p)->;alarm = 0;
}
if ((*p)->;signal && (*p)->;state==TASK_INTERRUPTIBLE)
(*p)->;state=TASK_RUNNING;
}
@@ task 1 如何变为TASK_RUNNING??signal 如何得到,alarm如何变非0且 /* this is the
scheduler proper: */
@@操作系统最重要的函数,调度算法
@@这个循环要找到一个可运行的任务才能退出,会死在这吗?即如没有一个可运行
while (1) {
c = -1;
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS];
while (--i) {
if (!*--p)
continue;
if ((*p)->;state == TASK_RUNNING && (*p)->;counter >; c)
c = (*p)->;counter, next = i;
}
if (c) break; @@记数大于零
for(p = &LAST_TASK ; p >; &FIRST_TASK ; --p)
if (*p)
(*p)->;counter = ((*p)->;counter >;>; 1) +
(*p)->;priority;
}
switch_to(next);
}
int sys_pause(void)
{
current->;state = TASK_INTERRUPTIBLE; @@任务可中断
schedule();
return 0;
}
void sleep_on(struct task_struct **p)
{
struct task_struct *tmp;
if (!p)
return;
if (current == &(init_task.task))
panic("task[0] trying to sleep";
tmp = *p;
*p = current;
current->;state = TASK_UNINTERRUPTIBLE;
schedule();
if (tmp) @@激活p,什么时候回来?唤醒上次睡眠的进程
tmp->;state=0;
}
void interruptible_sleep_on(struct task_struct **p)
{
struct task_struct *tmp;
if (!p)
return;
if (current == &(init_task.task))
panic("task[0] trying to sleep";
tmp=*p;
*p=current;
repeat: current->;state = TASK_INTERRUPTIBLE;
schedule();
if (*p && *p != current) {
(**p).state=0;
goto repeat;
}
@@好象下不来
*p=NULL;
if (tmp)
tmp->;state=0;
}
void wake_up(struct task_struct **p)
{
if (p && *p) {
(**p).state=0; @@唤醒该进程running
*p=NULL; @@睡眠栈为0
}
}
void do_timer(long cpl) @@定时调度
{
if (cpl)
current->;utime++; @@用户态时间加一
else
current->;stime++; @@系统态时间加一
if ((--current->;counter)>;0) return; @@当前记数减一
current->;counter=0;
if (!cpl) return;
schedule();
}
int sys_alarm(long seconds)
{
current->;alarm = (seconds>;0)?(jiffies+HZ*seconds):0;
return seconds;
}
int sys_getpid(void)
{
return current->;pid;
}
int sys_getppid(void)
{
return current->;father;
}
int sys_getuid(void)
{
return current->;uid;
}
int sys_geteuid(void)
{
return current->;euid;
}
int sys_getgid(void)
{
return current->;gid;
}
int sys_getegid(void)
{
return current->;egid;
}
int sys_nice(long increment)
{
if (current->;priority-increment>;0)
current->;priority -= increment;
return 0;
}
int sys_signal(long signal,long addr,long restorer)
{
long i;
switch (signal) {
case SIGHUP: case SIGINT: case SIGQUIT: case SIGILL:
case SIGTRAP: case SIGABRT: case SIGFPE: case SIGUSR1:
case SIGSEGV: case SIGUSR2: case SIGPIPE: case SIGALRM:
case SIGCHLD:
i=(long) current->;sig_fn[signal-1];
current->;sig_fn[signal-1] = (fn_ptr) addr;
current->;sig_restorer = (fn_ptr) restorer;
return i;
default: return -1;
}
}
void sched_init(void)
{
int i;
struct desc_struct * p;
set_tss_desc(gdt+FIRST_TSS_ENTRY,&(init_task.task.tss));@@init task tss
set_ldt_desc(gdt+FIRST_LDT_ENTRY,&(init_task.task.ldt));@@init ldt
p = gdt+2+FIRST_TSS_ENTRY;
for(i=1;i task = NULL;
p->;a=p->;b=0;
p++;
p->;a=p->;b=0;
p++;
}
ltr(0); @@调入task 0的tss
lldt(0); @@调入task 0的ldt
outb_p(0x36,0x43); /* binary, mode 3, LSB/MSB, ch 0 */
outb_p(LATCH & 0xff , 0x40); /* LSB */
outb(LATCH >;>; 8 , 0x40); /* MSB */
set_intr_gate(0x20,&timer_interrupt); @@irq 0 时钟中断
outb(inb_p(0x21)&~0x01,0x21);
set_system_gate(0x80,&system_call);
}





[目录]

--------------------------------------------------------------------------------


进程信号队列

    每个进程具有一个sigpending结构所描述的信号队列,它有3个成员,head指向第一个sigqueue成员,tail指向最末的sigqueue成员的next指针,signal描述了此队列中的信号集.
static int
send_signal(int sig, struct siginfo *info, struct sigpending *signals);
将信号sig和对应的消息结构info添加到信号队列signal中.
static int
collect_signal(int sig, struct sigpending *list, siginfo_t *info);
返回信号sig在队列list中的信息info.


struct task_struct {
        ...
        struct sigpending pending;
        ...
};
struct sigpending {
       struct sigqueue *head, **tail;
       sigset_t signal;
};
struct sigqueue {
       struct sigqueue *next;
       siginfo_t info;
       };
// kernel/signal.c
static int
send_signal(int sig, struct siginfo *info, struct sigpending *signals)
{
     struct sigqueue * q = NULL;
     /* Real-time signals must be queued if sent by sigqueue, or
       some other real-time mechanism.  It is implementation
      defined whether kill() does so.  We attempt to do so, on
      the principle of least surprise, but since kill is not
     allowed to fail with EAGAIN when low on memory we just
     make sure at least one signal gets delivered and don't
     pass on the info struct.  */

    if (atomic_read(&nr_queued_signals) < max_queued_signals) {
       q = kmem_cache_alloc(sigqueue_cachep, GFP_ATOMIC);
    }
    // nr_queued_signals和max_queued_signals用来限制全局sigqueue成员的数目
    if (q) {
        atomic_inc(&nr_queued_signals);
        q->;next = NULL;
        *signals->;tail = q;
        signals->;tail = &q->;next; tail总是指向最末的信号成员的next指针                switch ((unsign
ed long) info)
         {
        case 0:
          // info参数如果为0,表示信号来源于当前用户进程                                  q->;info.si_signo =
sig;
            q->;info.si_errno = 0;
            q->;info.si_code = SI_USER;
          q->;info.si_pid = current->;pid;
            q->;info.si_uid = current->;uid;
          break;
        case 1:
          // info参数如果为1,表示信号来源于内核本身                                  q->;info.si_signo = sig;
          q->;info.si_errno = 0;
          q->;info.si_code = SI_KERNEL;
           q->;info.si_pid = 0;
          q->;info.si_uid = 0;
           break;
        default:
           // 否则从info指针中拷贝信号
           copy_siginfo(&q->;info, info);
          break;
        }
      }
      else if (sig >;= SIGRTMIN && info && (unsigned long)info != 1                   && info->;
si_code != SI_USER)
      {
        ; 如果该信号是内核发出的实时信号,就返回错误码
        /*
         * Queue overflow, abort.  We may abort if the signal was rt
         * and sent by user using something other than kill().
       */
        return -EAGAIN;
      }
      sigaddset(&signals->;signal, sig); 将sig号标记在队列的信号集上
      return 0;
}
static int
collect_signal(int sig, struct sigpending *list, siginfo_t *info)
{
      if (sigismember(&list->;signal, sig)) {
        /* Collect the siginfo appropriate to this signal.  */                struct sigqueue *q, **
pp;
         pp = &list->;head; pp指向第一个信号成员的next指针
        while ((q = *pp) != NULL) {
                if (q->;info.si_signo == sig)                                            goto found_it;
                pp = &q->;next;
         }
        /* Ok, it wasn't in the queue.  We must have
           been out of queue space.  So zero out the
          info.
         */
        sigdelset(&list->;signal, sig);
        info->;si_signo = sig;
        info->;si_errno = 0;
        info->;si_code = 0;
        info->;si_pid = 0;
        info->;si_uid = 0;
        return 1;
   found_it:
   // 将找到信号成员从信号队列中删除
        if ((*pp = q->;next) == NULL)
        list->;tail = pp;
  /* Copy the sigqueue information and free the queue entry */
       copy_siginfo(info, &q->;info);
       kmem_cache_free(sigqueue_cachep,q);
       atomic_dec(&nr_queued_signals);
  /* Non-RT signals can exist multiple times.. */
       if (sig >;= SIGRTMIN) {
                while ((q = *pp) != NULL) {
                  if (q->;info.si_signo == sig)                                             goto found_another;
                    pp = &q->;next;
                }
       }
       sigdelset(&list->;signal, sig);
    found_another:
        return 1;
    }
    return 0;
}




[目录]

--------------------------------------------------------------------------------


SMP

    多处理机系统正在变得越来越普通。尽管大多数用户空间代码仍将完美地运行,而且有些情况下不需要增加额外的代码就能利用SMP特性的优势,但是内核空间代码必须编写成具备“SMP意识”且是“SMP安全的”。以下几段文字解释如何去做。
问题

    当有多个CPU时,同样的代码可能同时在两个或多个CPU上执行。这在如下所示用于初始化某个图像设备的例程中可能会出问题。
        void init_hardware(void)
        {
            outb(0x1, hardware_base + 0x30);
            outb(0x2, hardware_base + 0x30);
            outb(0x3, hardware_base + 0x30);
            outb(0x4, hardware_base + 0x30);
        }
    假设该硬件依赖于寄存器0x30按顺序依次被设为0、1、2、3来初始化,那么要是有另一个CPU来参乎的话,事情就会搞糟。想象有两个CPU的情形,它们都在执行这个例程,不过2号CPU进入得稍慢点:
        CPU 1                           CPU 2

        0x30 = 1
        0x30 = 2                        0x30 = 1
        0x30 = 3                        0x30 = 2
        0x30 = 4                        0x30 = 3
                                        0x30 = 4
    这会发生什么情况呢?从我们设想的硬件设备看来,它在寄存器0x30上收到的字节按顺序为:1、2、1、3、2、4、3、4。
    啊!原本好好的事第二个CPU一来就搞得一团糟了也。所幸的是,我们有防止这类事情发生的办法。

自旋锁小历史

    2.0.x版本的Linux内核通过给整个内核引入一个全局变量来防止多于一个CPU会造成的问题。这意味着任何时刻只有一个CPU能够执行来自内核空间的代码。这样尽管能工作,但是当系统开始以多于2个的CPU出现时,扩展性能就不怎么好。
    2.1.x版本的内核系列加入了粒度更细的SMP支持。这意味着不再依赖于以前作为全局变量出现的“大锁”,而是每个没有SMP意识的例程现在都需要各自的自旋锁。文件asm/spinlock.h中定义了若干类型的自旋锁。
    有了局部化的自旋锁后,不止一个CPU同时执行内核空间代码就变得可能了。

简单的自旋锁

    理解自旋锁的最简单方法是把它作为一个变量看待,该变量把一个例程或者标记为“我当前在另一个CPU上运行,请稍等一会”,或者标记为“我当前不在运行”。如果1号CPU首先进入该例程,它就获取该自旋锁。当2号CPU试图进入同一个例程时,该自旋锁告诉它自己已为1号CPU所持有,需等到1号CPU释放自己后才能进入。
        spinlock_t my_spinlock = SPIN_LOCK_UNLOCKED;
        unsigned long flags;

        spin_lock (&my_spinlock);
        ...
        critical section
        ...
        spin_unlock (&my_spinlock);

中断

    设想我们的硬件的驱动程序还有一个中断处理程序。该处理程序需要修改某些由我们的驱动程序定义的全局变量。这会造成混乱。我们如何解决呢?
    保护某个数据结构,使它免遭中断之修改的最初方法是全局地禁止中断。在已知只有自己的中断才会修改自己的驱动程序变量时,这么做效率很低。所幸的是,我们现在有更好的办法了。我们只是在使用共享变量期间禁止中断,此后重新使能。
    实现这种办法的函数有三个:
        disable_irq()
        enable_irq()
        disable_irq_nosync()
    这三个函数都取一个中断号作为参数。注意,禁止一个中断的时间太长会导致难以追踪程序缺陷,丢失数据,甚至更坏。
    disable_irq函数的非同步版本允许所指定的IRQ处理程序继续运行,前提是它已经在运行,普通的disable_irq则所指定的IRQ处理程序不在如何CPU上运行。
    如果需要在中断处理程序中修改自旋锁,那就不能使用普通的spin_lock()和spin_unlock(),而应该保存中断状态。这可通过给这两个函数添加_irqsave后缀很容易地做到:
        spinlock_t my_spinlock = SPIN_LOCK_UNLOCKED;
        unsigned long flags;

        spin_lock_irqsave(&my_spinlock, flags);
        ...
        critical section
        ...
        spin_unlock_irqrestore (&my_spinlock, flags);





[目录]

--------------------------------------------------------------------------------


内核线程页目录的借用

    创建内核线程的时候,由于内核线程没有用户空间,而所有进程的内核页目录都是一样的((某些情况下可能有不同步的情况出现,主要是为了减轻同步所有进程内核页目录的开销,而只是在各个进程要访问内核空间,如果有不同步的情况,然后才进行同步处理),所以创建的内核线程的内核页目录总是借用进程0的内核页目录。
>;>;>; kernel_thread以标志CLONE_VM调用clone系统调用
/*
* Create a kernel thread
*/
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
long retval, d0;

__asm__ __volatile__(
  "movl %%esp,%%esi\n\t"
  "int $0x80\n\t"  /* Linux/i386 system call */
  "cmpl %%esp,%%esi\n\t" /* child or parent? */
  /* Load the argument into eax, and push it.  That way, it does
   * not matter whether the called function is compiled with
   * -mregparm or not.  */
  "movl %4,%%eax\n\t"
  "pushl %%eax\n\t"
  "call *%5\n\t"  /* call fn */
  "movl %3,%0\n\t" /* exit */
  "int $0x80\n"
  "1:\t"
  :"=&a" (retval), "=&S" (d0)
  :"0" (__NR_clone), "i" (__NR_exit),
   "r" (arg), "r" (fn),
   "b" (flags | CLONE_VM)
  : "memory";
return retval;
}

>;>;>; sys_clone->;do_fork->;copy_mm:
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
{
struct mm_struct * mm, *oldmm;
int retval;

。。。。。。。。

tsk->;mm = NULL;
tsk->;active_mm = NULL;

/*
  * Are we cloning a kernel thread?
  *
  * We need to steal a active VM for that..
  */
>;>;>; 如果是内核线程的子线程(mm=NULL),则直接退出,此时内核线程mm和active_mm均为为NULL
oldmm = current->;mm;
if (!oldmm)
  return 0;

>;>;>; 内核线程,只是增加当前进程的虚拟空间的引用计数
if (clone_flags & CLONE_VM) {
  atomic_inc(&oldmm->;mm_users);
  mm = oldmm;
  goto good_mm;
}

。。。。。。。。。。

good_mm:
>;>;>; 内核线程的mm和active_mm指向当前进程的mm_struct结构
tsk->;mm = mm;
tsk->;active_mm = mm;
return 0;

。。。。。。。
}

然后内核线程一般调用daemonize来释放对用户空间的引用:
>;>;>; daemonize->;exit_mm->;_exit_mm:
/*
* Turn us into a lazy TLB process if we
* aren't already..
*/
static inline void __exit_mm(struct task_struct * tsk)
{
struct mm_struct * mm = tsk->;mm;

mm_release();
if (mm) {
  atomic_inc(&mm->;mm_count);
  if (mm != tsk->;active_mm) BUG();
  /* more a memory barrier than a real lock */
  task_lock(tsk);
>;>;>; 释放用户虚拟空间的数据结构
  tsk->;mm = NULL;
  task_unlock(tsk);
  enter_lazy_tlb(mm, current, smp_processor_id());

>;>;>; 递减mm的引用计数并是否为0,是则释放mm所代表的映射
  mmput(mm);
}
}

asmlinkage void schedule(void)
{
。。。。。。。。。
if (!current->;active_mm) BUG();

。。。。。。。。。

prepare_to_switch();
{
  struct mm_struct *mm = next->;mm;
  struct mm_struct *oldmm = prev->;active_mm;
>;>;>; mm = NULL,选中的为内核线程
  if (!mm) {
>;>;>; 对内核线程,active_mm = NULL,否则一定是出错了
   if (next->;active_mm) BUG();
>;>;>; 选中的内核线程active_mm借用老进程的active_mm
   next->;active_mm = oldmm;
   atomic_inc(&oldmm->;mm_count);
   enter_lazy_tlb(oldmm, next, this_cpu);
  } else {
>;>;>; mm != NULL 选中的为用户进程,active_mm必须与mm相等,否则一定是出错了
   if (next->;active_mm != mm) BUG();
   switch_mm(oldmm, mm, next, this_cpu);
  }

>;>;>; prev = NULL ,切换出去的是内核线程
  if (!prev->;mm) {
>;>;>; 设置其 active_mm = NULL 。
   prev->;active_mm = NULL;
   mmdrop(oldmm);
  }
}

}

对内核线程的虚拟空间总结一下:
1、创建的时候:
父进程是用户进程,则mm和active_mm均共享父进程的,然后内核线程一般调用daemonize适头舖m
父进程是内核线程,则mm和active_mm均为NULL
总之,内核线程的mm = NULL;进程调度的时候以此为依据判断是用户进程还是内核线程。

2、进程调度的时候
如果切换进来的是内核线程,则置active_mm为切换出去的进程的active_mm;
如果切换出去的是内核线程,则置active_mm为NULL。




[目录]

--------------------------------------------------------------------------------


代码分析

    LINUX系统是分时多用户系统, 它有多进程系统的特点,CPU按时间片分配给各个用户使用, 而在实质上应该说CPU按时间片分配给各个进程使用, 每个进程都有自己的运行环境以使得在CPU做进程切换时保存该进程已计算了一半的状态。
进程的切换包括三个层次:

    ·用户数据的保存: 包括正文段(TEXT), 数据段(DATA,BSS), 栈段(STACK), 共享内存段(SHARED MEMORY)的保存。
    ·寄存器数据的保存: 包括PC(program counter,指向下一条要执行的指令的地址),   PSW(processor status word,处理机状态字), SP(stack pointer,栈指针), PCBP(pointer of process control block,进程控制块指针), FP(frame pointer,指向栈中一个函数的local 变量的首地址), AP(augument pointer,指向栈中函数调用的实参位置), ISP(interrupt stack pointer,中断栈指针), 以及其他的通用寄存器等。
    ·系统层次的保存: 包括proc,u,虚拟存储空间管理表格,中断处理栈。以便于该进程再一次得到CPU时间片时能正常运行下去。

    多进程系统的一些突出的特点:
并行化
   一件复杂的事件是可以分解成若干个简单事件来解决的, 这在程序员的大脑中早就形成了这种概念, 首先将问题分解成一个个小问题, 将小问题再细分, 最后在一个合适的规模上做成一个函数。 在软件工程中也是这么说的。如果我们以图的方式来思考, 一些小问题的计算是可以互不干扰的, 可以同时处理, 而在关键点则需要统一在一个地方来处理, 这样程序的运行就是并行的, 至少从人的时间观念上来说是这样的。 而每个小问题的计算又是较简单的。
简单有序
   这样的程序对程序员来说不亚于管理一班人, 程序员为每个进程设计好相应的功能, 并通过一定的通讯机制将它们有机地结合在一起, 对每个进程的设计是简单的, 只在总控部分小心应付(其实也是蛮简单的), 就可完成整个程序的施工。
互不干扰
   这个特点是操作系统的特点, 各个进程是独立的, 不会串位。
事务化
   比如在一个数据电话查询系统中, 将程序设计成一个进程只处理一次查询即可, 即完成一个事务。当电话查询开始时, 产生这样一个进程对付这次查询; 另一个电话进来时, 主控程序又产生一个这样的进程对付, 每个进程完成查询任务后消失. 这样的编程多简单, 只要做一次查询的程序就可以了。

   Linux是一个多进程的操作系统,进程是分离的任务,拥有各自的权利和责任。如果一个进程崩溃,它不应该让系统的另一个进程崩溃。每一个独立的进程运行在自己的虚拟地址空间,除了通过安全的核心管理的机制之外无法影响其他的进程。
   在一个进程的生命周期中,进程会使用许多系统资源。比如利用系统的CPU执行它的指令,用系统的物理内存来存储它和它的数据。它会打开和使用文件系统中的文件,会直接或者间接使用系统的物理设备。如果一个进程独占了系统的大部分物理内存和CPU,对于其他进程就是不公平的。所以Linux必须跟踪进程本身和它使用的系统资源以便公平地管理系统中的进程。
   系统最宝贵的资源就是CPU。通常系统只有一个CPU。Linux作为一个多进程的操作系统,它的目标就是让进程在系统的CPU上运行,充分利用CPU。如果进程数多于CPU(一般情况都是这样),其他的进程就必须等到CPU被释放才能运行。多进程的思想就是:一个进程一直运行,直到它必须等待,通常是等待一些系统资源,等拥有了资源,它才可以继续运行。在一个单进程的系统中,比如DOS,CPU被简单地设为空闲,这样等待资源的时间就会被浪费。而在一个多进程的系统中,同一时刻许多进程在内存中,当一个进程必须等待时,操作系统将CPU从这个进程切换到另一个更需要的进程。
   我们组分析的是Linux进程的状态转换以及标志位的作用,它没有具体对应某个系统调用,而是分布在各个系统调用中。所以我们详细而广泛地分析了大量的原码,对进程状态转换的原因、方式和结果进行了分析,大致总结了整个Linux系统对进程状态管理的实现机制。

   Linux中,每个进程用一个task_struct的数据结构来表示,用来管理系统中的进程。Task向量表是指向系统中每一个task_struct数据结构的指针的数组。这意味着系统中的最大进程数受到Task向量表的限制,缺省是512。这个表让Linux可以查到系统中的所有的进程。操作系统初始化后,建立了第一个task_struct数据结构INIT_TASK。当新的进程创建时,从系统内存中分配一个新的task_struct,并增加到Task向量表中。为了更容易查找,用current指针指向当前运行的进程。

   task_struct结构中有关于进程调度的两个重要的数据项:
   struct task_struct {
       ………….
       volatile  long  state; /* -1 unrunnable , 0 runnable , >;0 stopped */
       unsigned  long  flags; /* per process flags, defined below */
       ………….
     };
   每个在Task向量表中登记的进程都有相应的进程状态和进程标志,是进行进程调度的重要依据。进程在执行了相应的进程调度操作后,会由于某些原因改变自身的状态和标志,也就是改变state和flags这两个数据项。进程的状态不同、标志位不同对应了进程可以执行不同操作。在Linux2.2.8版本的sched.h中定义了六种状态,十三种标志。
//进程状态
#define TASK_RUNNING                0
#define TASK_INTERRUPTIBLE        1
#define TASK_UNINTERRUPTIBLE        2
#define TASK_ZOMBIE                4
#define TASK_STOPPED                8
#define TASK_SWAPPING                16

它们的含义分别是:

TASK_RUNNING:正在运行的进程(是系统的当前进程)或准备运行的进程(在Running队列中,等待被安排到系统的CPU)。处于该状态的进程实际参与了进程调度。
TASK_INTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,也可由其它进程被信号中断、唤醒后进入就绪状态。
TASK_UNINTERRUPTIBLE:处于等待队列中的进程,直接等待硬件条件,待资源有效时唤醒,不可由其它进程通过信号中断、唤醒。
TASK_ZOMBIE:终止的进程,是进程结束运行前的一个过度状态(僵死状态)。虽然此时已经释放了内存、文件等资源,但是在Task向量表中仍有一个task_struct数据结构项。它不进行任何调度或状态转换,等待父进程将它彻底释放。
TASK_STOPPED:进程被暂停,通过其它进程的信号才能唤醒。正在调试的进程可以在该停止状态。
TASK_SWAPPING:进程页面被兑换出内存的进程。这个状态基本上没有用到,只有在sched.c的count_active_tasks()函数中判断处于该种状态的进程也属于active的进程,但没有对该状态的赋值。

//进程标志位:
#define PF_ALIGNWARN        0x00000001
#define PF_STARTING        0x00000002
#define PF_EXITING        0x00000004
#define PF_PTRACED        0x00000010
#define PF_TRACESYS        0x00000020
#define PF_FORKNOEXEC        0x00000040
#define PF_SUPERPRIV        0x00000100
#define PF_DUMPCORE        0x00000200
#define PF_SIGNALED        0x00000400
#define PF_MEMALLOC        0x00000800
#define PF_VFORK            0x00001000
#define PF_USEDFPU        0x00100000
#define PF_DTRACE        0x00200000

其中PF_STARTING没有用到。
PF_MEMEALLOC和PF_VFORK这两个标志位是新版本中才有的。

各个标志位的代表着不同含义,对应着不同调用:

PF_ALIGNWARN    标志打印“对齐”警告信息,只有在486机器上实现
PF_STARTING      进程正被创建
PF_EXITING        标志进程开始关闭。
在do_exit()时置位。
    current->;flags |= PF_EXITING
用于判断是否有效进程。
在nlmclnt_proc()(在fs\lockd\clntproc.c),如果current_flag为PF_EXITING,则进程由于正在退出清除所有的锁,将执行异步RPC 调用。
PF_PTRACED      进程被跟踪标志,
在do_fork()时清位。
    p->;flags &= ~PF_PTRACED
当ptrace(0)被调用时置位,在进程释放前要清掉。
    current->;flags |= PF_PTRACED
在sys_trace()中判断
如果request为PTRACE_TRACEME,如是则将current_flag置为PF_PTRACED;
如果request为PTRACE_ATTACH,则将child_flag置为PF_PTRACED,给child发一个SIGSTOP信号;
如果request为PTRACE_DETACH ,则将child清除PF_PTRACED。
在syscall_trace()中判断current_flag如果为PF_TRACED和PF_TRACESYS,则current强行退出时的出错代码置为SIGTRAP并将状态置为STOPPED。
PF_TRACESYS       正在跟踪系统调用。
do_fork()时清位,在进程释放前要清掉。
在sys_trace()中判断request如果为PTRACE_SYSCALL,则将child->;flags 置为 PF_TRACESYS;如为PTRACE_SYSCALL,则将child->;flags 清除 PF_TRACESYS;然后唤醒child。如果request为PTRACE_SINGLESTEP(即单步跟踪),则将child_flag清除PF_TRACESYS,唤醒child。
PF_FORKNOEXEC    进程刚创建,但还没执行。
在do_fork()时置位。
    p->;flags |=  PF_FORKNOEXEC
在调入格式文件时清位。
    p->;flags &= ~ PF_FORKNOEXEC
PF_SUPERPRIV       超级用户特权标志。
    如果是超级用户进程则置位,用户特权设为超级用户,如是超级用户,在统计时置统计标志(accounting flag)为ASU。
PF_DUMPCORE       标志进程是否清空core文件。
Core文件由gdb进行管理,给用户提供有用信息,例如查看浮点寄存器的内容比较困难,事实上我们可以从内核文件里的用户结构中得到
  Core文件格式如下图:
UPAGE
DATA
STACK
              Core 文件结构
       UPAGE是包含用户结构的一个页面,告诉gdb文件中现有内容所有寄存器也在           UPAGE中,通常只有一页。DATA存放数据区。STACK堆栈区
   最小Core文件长度为三页(12288字节)
在task_struct中定义一个dumpable变量,当dumpable==1时表示进程可以清空core文件(即将core文件放入回收站),等于0时表示该进程不能清空core文件(即core文件以放在回收站中,不可再放到回收站中),此变量初值为1。
例如在调用do_aout_core_dump()时判断current->;dumpable是否等于1(即判断该进程是否能将core文件放入回收站),如果等于1则将该变量置为0,在当前目录下建立一个core dump image ,在清空用户结构前,由gdb算出数据段和堆栈段的位置和使用的虚地址,用户数据区和堆栈区在清空前将相应内容写入core dump,将PF_DUMPCORE置位,清空数据区和堆栈区。
只有在aout_core_dump()内调用do_aout_core_dump(),而没有地方调用aout_core_dump()。对其它文件格式也是类似。
9、 PF_SIGNALED       标志进程被信号杀出。
在do_signal()中判断信号,如果current收到信号为SIGHUP, SIGINT, SIGIOT, SIGKILL, SIGPIPE, SIGTERM, SIGALRM, SIGSTKFLT, SIGURG, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGIO, SIGPOLL, SIGLOST, SIGPWR,则执行lock_kernel(),将信号加入current的信号队列,将current->;flag置为PF_SIGNALED,然后执行do_exit()
PF_USEDFPU        标志该进程使用FPU,此标志只在SMP时使用。
在task_struct中有一变量used_math,进程是否使用FPU。
在CPU从prev切换到next时,如果prev使用FPU则prev的flag清除PF_USEDFPU。
    prev->;flags&=~PF_USEDFPU
在flush_thread()(arch\i386\kernel\process.c)、restore_i387_hard()、save_i387_hard()(arch\i386\kernel\signal.c)中,如果是SMP方式,且使用FPU则stts(),否则清除PF_USEDFPU。
    current->;flags &= ~PF_USEDFPU
在sys_trace()中如果request为PTRACE_SETFPREGS,则将child的used_math置为1,将child_flag清除PF_USEDFPU。
    child->;flags &= ~PF_USEDFPU
在SMP方式下进行跟踪时,判断是否使用FPU。
在跟踪时出现数学错误时清位。
    current->;flags &= ~PF_USEDFPU
PF_DTRACE          进程延期跟踪标志,只在m68k下使用。
跟踪一个trapping指令时置位。
    current->;flags |= PF_DTRACE
PF_ONSIGSTK        标志进程是否工作在信号栈,只在m68k方式下使用。
liunx 2.1.19版本中使用此标志位,而2.2.8版本中不使用。
在处理信号建立frame时如果sigaction标志为ONSTACK,则将current->;flag置为PF_ONSIGSTK。
PF_MEMALLOC      进程分配内存标志。
linux 2.2.8版本中使用此标志位。
在kpiod()和kwpad()中置位。
    tsk->;flags |= PF_MEMALLOC
PF_VFORK           linux 2.2.8版本中使用此标志位。
在copy_flags(unsigned long clone_flags, struct task_struct *p),如果clone_flags为CLONE_VFORK,则将p的flags置为PF_VFORK。
在mm_release()中将current ->;flags清除PF_VFORK。
    tsk->;flags &= ~PF_VFORK
    具体的分析由我组的另外同学进行。

Linux的各进程之间的状态转换的系统调用
我将参与Linux的各进程之间的状态转换的系统调用总结成一张流程图:


进程的创建:TASK_RUNNING

第一个进程在系统启动时创建,当系统启动的时候它运行在核心态,这时,只有一个进程:初始化进程。象所有其他进程一样,初始进程有一组用堆栈、寄存器等等表示的机器状态。当系统中的其他进程创建和运行的时候这些信息存在初始进程的task_struct数据结构中。在系统初始化结束的时候,初始进程启动一个核心进程(叫做init)然后执行空闲循环,什么也不做。当没有什么可以做的时候,调度程序会运行这个空闲的进程。这个空闲进程的task_struct是唯一一个不是动态分配而是在核心连接的时候静态定义的,为了不至于混淆,叫做init_task。
   系统调用sys_fork 和sys_clone都调用函数do_fork()(在kernel/fork.中定义)。
   进程由do_fork()函数创建,先申请空间,申请核心堆栈;然后在Task向量表中找到空闲位置;在进行正式初始化以前,将新创建的进程的状态都置为TASK_UNINTERRUPTIBLE,以免初始化过程被打断;开始初始化工作,如初始化进程时钟、信号、时间等数据;继承父进程的资源,如文件、信号量、内存等;完成进程初始化后,由父进程调用wake_up_process()函数将其唤醒,状态变为TASK_RUNNING,挂到就绪队列run queue,返回子进程的pid。

//   C:\SRCLNX\KERNEL\FORK.C
int do_fork(unsigned long clone_flags, unsigned long usp, struct pt_regs *regs)
{

        为新进程申请PCB空间;
        if (申请不到)
                返回错误,退出;
        为新进程申请核心堆栈;
        if (核心堆栈申请不到)
                返回错误,退出;
        为新进程在Task向量表中找到空闲位置;
/*复制父进程current PCB中的信息,继承current的资源*/;
    p = current;
        在进行正式初始化以前,将新创建的进程的状态都置为TASK_UNINTERRUPTIBLE,以免初始化过程被打断,并置一些标志位.
/*为防止信号、定时中断误唤醒未创建完毕的进                                       程,将子进程的状态设成不可中断的*/
        p->;state = TASK_UNINTERRUPTIBLE;
/*跟踪状态和超级用户特权是没有继承性的,因为在root用户为普通用户创建进程时,出于安全考虑这个普通用户的进程不允许拥有超级用户特权。*/
        p->;flags &= ~(PF_PTRACED|PF_TRACESYS|PF_SUPERPRIV);
/*将进程标志设成初建,在进程第一次获得CPU时,内核将根据此标志进行一定操作*/
        p->;flags |= PF_FORKNOEXEC;
   开始Task_struct的初始化工作,如初始化进程时钟、信号、时间等数据;
   继承父进程所有资源:
                拷贝父进程当前打开的文件;
                拷贝父进程在VFS的位置;
                拷贝父进程的信号量;
                拷贝父进程运行的内存;
                拷贝父进程的线程;
   初始化工作结束,父进程将其将其唤醒,挂入running队列中,返回子进程的pid;

}

进程的调度(schedule()):

   处于TASK_RUNNING状态的进程移到run queue,会由schedule()按CPU调度算法在合适的时候选中,分配给CPU。
   新创建的进程都是处于TASK_RUNNING状态,而且被挂到run queue的队首。进程调度采用变形的轮转法(round robin)。当时间片到时(10ms的整数倍),由时钟中断引起新一轮调度,把当前进程挂到run queue队尾。
   所有的进程部分运行与用户态,部分运行于系统态。底层的硬件如何支持这些状态各不相同但是通常有一个安全机制从用户态转入系统态并转回来。用户态比系统态的权限低了很多。每一次进程执行一个系统调用,它都从用户态切换到系统态并继续执行。这时让核心执行这个进程。Linux中,进程不是互相争夺成为当前运行的进程,它们无法停止正在运行的其它进程然后执行自身。每一个进程在它必须等待一些系统事件的时候会放弃CPU。例如,一个进程可能不得不等待从一个文件中读取一个字符。这个等待发生在系统态的系统调用中。进程使用了库函数打开并读文件,库函数又执行系统调用从打开的文件中读入字节。这时,等候的进程会被挂起,另一个更加值得的进程将会被选择执行。进程经常调用系统调用,所以经常需要等待。即使进程执行到需要等待也有可能会用去不均衡的CPU事件,所以Linux使用抢先式的调度。用这种方案,每一个进程允许运行少量一段时间,200毫秒,当这个时间过去,选择另一个进程运行,原来的进程等待一段时间直到它又重新运行。这个时间段叫做时间片。
   需要调度程序选择系统中所有可以运行的进程中最值得的进程。一个可以运行的进程是一个只等待CPU的进程。Linux使用合理而简单的基于优先级的调度算法在系统当前的进程中进行选择。当它选择了准备运行的新进程,它就保存当前进程的状态、和处理器相关的寄存器和其他需要保存的上下文信息到进程的task_struct数据结构中。然后恢复要运行的新的进程的状态(又和处理器相关),把系统的控制交给这个进程。为了公平地在系统中所有可以运行(runnable)的进程之间分配CPU时间,调度程序在每一个进程的task_struct结构中保存了信息。
   policy 进程的调度策略:Linux有两种类型的进程:普通和实时。实时进程比所有其它进程的优先级高。如果有一个实时的进程准备运行,那么它总是先被运行。实时进程有两种策略:环或先进先出(round robin and first in first out)。在环的调度策略下,每一个实时进程依次运行,而在先进先出的策略下,每一个可以运行的进程按照它在调度队列中的顺序运行,这个顺序不会改变。
   Priority 进程的调度优先级。也是它允许运行的时候可以使用的时间量(jiffies)。你可以通过系统调用或者renice命令来改变一个进程的优先级。
   Rt_priority Linux支持实时进程。这些进程比系统中其他非实时的进程拥有更高的优先级。这个域允许调度程序赋予每一个实时进程一个相对的优先级。实时进程的优先级可以用系统调用来修改Coutner 这时进程可以运行的时间量(jiffies)。进程启动的时候等于优先级(priority),每一次时钟周期递减。
  调度程序schedule()从核心的多个地方运行。它可以在把当前进程放到等待队列之后运行,也可以在系统调用之后进程从系统态返回进程态之前运行。需要运行调度程序的另一个原因是系统时钟刚好把当前进程的计数器(counter)置成了0。每一次调度程序运行它做以下工作:
(1)kernel work 调度程序运行bottom half handler并处理系统的调度任务队列。
(2)Current pocess 在选择另一个进程之前必须处理当前进程。
(3)如果当前进程的调度策略是环则它放到运行队列的最后。
(4)如果任务状态是TASK_INTERRUPTIBLE的而且它上次调度的时候收到过一个信号,它的状态变为TASK_RUNNING;
     如果当前进程超时,它的状态成为RUNNING;
     如果当前进程的状态为RUNNING则保持此状态;
     不是RUNNING或者INTERRUPTIBLE的进程被从运行队列中删除。这意味着当调度程序查找最值得运行的进程时不会考虑这样的进程。
(5)Process Selection 调度程序查看运行队列中的进程,查找最值得运行的进程。如果有实时的进程(具有实时调度策略),就会比普通进程更重一些。普通进程的重量是它的counter,但是对于实时进程则是counter 加1000。这意味着如果系统中存在可运行的实时进程,就总是在任何普通可运行的进程之前运行。当前的进程,因为用掉了一些时间片(它的counter减少了),所以如果系统中由其他同等优先级的进程,就会处于不利的位置:这也是应该的。如果几个进程又同样的优先级,最接近运行队列前段的那个就被选中。当前进程被放到运行队列的后面。如果一个平衡的系统,拥有大量相同优先级的进程,那么回按照顺序执行这些进程。这叫做环型调度策略。不过,因为进程需要等待资源,它们的运行顺序可能会变化。
(6)Swap Processes 如果最值得运行的进程不是当前进程,当前进程必须被挂起,运行新的进程。当一个进程运行的时候它使用了CPU和系统的寄存器和物理内存。每一次它调用例程都通过寄存器或者堆栈传递参数、保存数值比如调用例程的返回地址等。因此,当调度程序运行的时候它在当前进程的上下文运行。它可能是特权模式:核心态,但是它仍旧是当前运行的进程。当这个进程要挂起时,它的所有机器状态,包括程序计数器(PC)和所有的处理器寄存器,必须存到进程的task_struct数据结构中。然后,必须加载新进程的所有机器状态。这种操作依赖于系统,不同的CPU不会完全相同地实现,不过经常都是通过一些硬件的帮助。
(7)交换出去进程的上下文发生在调度的最后。前一个进程存储的上下文,就是当这个进程在调度结束的时候系统的硬件上下文的快照。相同的,当加载新的进程的上下文时,仍旧是调度结束时的快照,包括进程的程序计数器和寄存器的内容。
(如果前一个进程或者新的当前进程使用虚拟内存,则系统的页表需要更新。同样,这个动作适合体系结构相关。Alpha AXP处理器,使用TLT(Translation Look-aside Table)或者缓存的页表条目,必须清除属于前一个进程的缓存的页表条目。

   下面我就来总结一下进程创建以后到被杀死的整个进程生命周期中,状态可能在TASK_RUNNING、TASK_INTERRUPTIBLE、TASK_UNINTERRUPTIBLE 、TASK_STOPPED以及TASK_ZOMBLE之间转换的原因。

进程在TASK_RUNNING以及TASK_UNINTERRUPTIBLE、TASK_INTERRUPTIBLE之间转换:
   获得CPU而正在运行的进程会由于某些原因,比如:申请不到某个资源,其状态会从TASK_RUNNING变为TASK_INTERRUPTIBLE或TASK_UNINTERRUPTIBLE的等待状态。同样在经历了某些情况,处于等待状态的进程会被重新唤醒,等待分配给CPU。状态为TASK_INTERRUPTIBLE的睡眠进程会被唤醒,回到TASK_RUNNING状态,重新等待schedule()分配给它CPU,继续运行,比如:当申请资源有效时,也可以由signal或定时中断唤醒。而状态为TASK_INTERRUPTIBLE的睡眠进程只有当申请资源有效时被唤醒,不能被signal、定时中断唤醒。

1.通过sleep_on()、interruptible_sleep_on()、sleep_on_timeout()、interruptible_sleep_on_timeout()以及wake_up()、wake_up_process()、wake_up_interruptible()函数对进行的转换:

   sleep_on():TASK_RUNNING->;TASK_UNINTERRUPTIBLE
   当拥有CPU的进程申请资源无效时,会通过sleep_on(),将进程从TASK_RUNNING切换到TASK_UNINTERRUPTIBLE状态。sleep_on()函数的作用就是将current进程的状态置成TASK_UNINTERRUPTIBLE,并加到等待队列中。
   一般来说引起状态变成TASK_UNINTERRUPTIBLE的资源申请都是对一些硬件资源的申请,如果得不到这些资源,进程将不能执行下去,不能由signal信号或时钟中断唤醒,而回到TASK_RUNNING状态。
   我们总结了这种类型的转换原因有:
(1)对某些资源的操作只能由一个进程进行,所以系统对该项资源采用上锁机制。在申请该项资源时,必须先申请资源的锁,如果已经被别的进程占用,则必须睡眠在对该锁的等待队列上。而且这种睡眠不能被中断,必须等到得到了资源才能继续进行下去。
如:
对网络连接表锁(Netlink table lock)的申请, sleep_on(&nl_table_wait);
对交换页进行I/O操作的锁的申请, sleep_on(&lock_queue);
对Hash表操作的锁的申请, sleep_on(&hash_wait);
在UMSDOS文件系统创建文件或目录时,必须等待其他同样的创建工作结束,sleep_on (&dir->;u.umsdos_i.u.dir_info.p);

(2)某些进程在大部分时间处于睡眠状态,仅在需要时被唤醒去执行相应的操作,当执行完后,该进程又强制去睡眠。
如:
wakeup_bdflush()是对dirty buffer进行动态的响应,一旦该进程被激活,就将一定数量的dirty buffer写回磁盘,然后调用sleep_on(&bdflush_done),又去睡眠。

interruptible_sleep_on():TASK_RUNNING->;TASK_INTERRUPTIBLE
   与sleep_on()函数非常地相象,当拥有CPU的进程申请资源无效时,会通过interruptible_sleep_on(),将进程从TASK_RUNNING切换到TASK_INTERRUPTIBLE状态。interruptible_sleep_on()函数的作用就是将current进程的状态置成TASK_INTERRUPTIBLE,并加到等待队列中。
   处于TASK_INTERRUPTIBLE状态的进程可以在资源有效时被wake_up()、wake_up_interruptible()或wake_up_process()唤醒,或收到signal信号以及时间中断后被唤醒。
   进行这种转换的原因基本上与sleep_on()相同,申请资源无效时进程切换到等待状态。与之不同的是处于interruptible_sleep_on()等待状态的进程是可以接受信号或中断而重新变为running状态。所以可以认为对这些资源的申请没有象在sleep_on()中资源的要求那么严格,必须得到该资源进程才能继续其运行下去。

sleep_on_timeout():TASK_RUNNING->;TASK_UNINTERRUPTIBLE
sleep_on_timeout(&block.b_wait, 30*HZ);

interruptible_sleep_on_timeout():TASK_RUNNING->;TASK_INTERRUPTIBLE
   虽然在申请资源或运行中出现了某种错误,但是系统仍然给进程一次重新运行的机会。调用该函数将进程从TASK_RUNNING切换到TASK_INTERRUTIBLE状态,并等待规定的时间片长度,再重新试一次。
如:在smb_request_ok 中产生了连接失败的错误,会在sem_retry()中给一次重新连接的机会。//interruptible_sleep_on_timeout(&server->;wait,  5*HZ);

wake_up():TASK_UNINTERRUPTIBLE->; TASK_RUNNING;
          TASK_INTERRUPTIBLE->; TASK_RUNNING
   处于TASK_UNINTERRUPTIBLE状态的进程不能由signal信号或时钟中断唤醒,只能由wake_up()或wake_up_process()唤醒。wake_up()函数的作用是将wait_queue中的所有状态为TASK_INTERRUPTIBLE或TASK_UNINTERRUPTIBLE的进程状态都置为TASK_RUNNING,并将它们都放到running队列中去,即唤醒了所有等待在该队列上的进程。
void wake_up(struct wait_queue **q)
{
        struct wait_queue *next;
        struct wait_queue *head;

        if (!q || !(next = *q))
                return;
        head = WAIT_QUEUE_HEAD(q);
        while (next != head) {
                struct task_struct *p = next->;task;
                next = next->;next;
                if (p != NULL) {
                        if ((p->;state == TASK_UNINTERRUPTIBLE) ||
                            (p->;state == TASK_INTERRUPTIBLE))
                                wake_up_process(p);
                }
                if (!next)
                        goto bad;
        }
        return;
bad:
        printk("wait_queue is bad (eip = %p)\n",
                __builtin_return_address(0));
        printk("        q = %p\n",q);
        printk("       *q = %p\n",*q);
}

  wake_up()在下列情况下被调用:
这个函数通常在资源有效时调用,资源锁已经被释放,等待该资源的所有进程都被置为TASK_RUNNING状态,移到run queue,重新参与调度,对这一资源再次竞争。这时又会有某个进程竞争到了该项资源,而其他的进程在申请失败后,又回到TASK_UNINTERRUPTIBLE或TASK_INTERRUPTIBLE状态。
如:
网络连接表锁(Netlink table lock)释放后,唤醒等待该锁的所有睡眠进程 wake_up(&nl_table_wait);
对交换页进行I/O操作的锁释放后,唤醒等待该锁的所有睡眠进程, wake_up(&lock_queue);
对Hash表操作的锁释放后,唤醒等待该锁的所有睡眠进程,wake_up(&hash_wait);
在UMSDOS文件系统创建文件或目录工作结束后,唤醒其他由于等待它创建结束而睡眠的进程, wake_up (&dir->;u.umsdos_i.u.dir_info.p);

唤醒睡眠进程执行某些操作:
如:
bd_flush()函数要将一些dirty buffer写回磁盘,就调用wake_up(&bdflush_done),唤醒正在睡眠的wakeup_bdflush()进程去处理写回。


wake_up_process():TASK_UNINTERRUPTIBLE->; TASK_RUNNING;
                   TASK_INTERRUPTIBLE->; TASK_RUNNING
   wake_up_process()函数的作用是将参数所指的那个进程状态从TASK_INTERRUPTIBLE,TASK_UNINTERRUPTIBLE变为TASK_RUNNING,并将它放到running队列中去。

void wake_up_process(struct task_struct * p)
{
        unsigned long flags;

        /*
        * We want the common case fall through straight, thus the goto.
        */
        spin_lock_irqsave(&runqueue_lock, flags);
        p->;state = TASK_RUNNING;
        if (p->;next_run)
                goto out;
        add_to_runqueue(p);
        spin_unlock_irqrestore(&runqueue_lock, flags);

        reschedule_idle(p);
        return;
out:
        spin_unlock_irqrestore(&runqueue_lock, flags);
}

   这个函数的实现机制与wake_up()的不同在于,它只能唤醒某一个特定的睡眠进程,而wake_up()是唤醒整个等待队列的睡眠进程。所以,它的唤醒的原因与wake_up()也有一定的区别,除了由于wake_up()对它的调用之外,它唤醒进程并不是由于资源有效造成的,唤醒的进程也不是因等待资源有效而睡眠的进程。有以下几种情况:
父进程对子进程的唤醒:
如:
在sys_ptrace()中当收到的跟踪请求为:PTRACE_CONT(在处理完信号后继续);PTRACE_KILL(将子进程杀出);PTRACE_SINGLESTEP(对子进程进行单步跟踪);PTRACE_DETACH的时候,都会在处理结束时,唤醒子进程,给子进程一个运行的机会。
在do_fork()中,新建进程初始化完毕,会由父进程唤醒它,将该进程移到run queue中,置状态为TASK_RUNNING。

当需要的时候唤醒某个睡眠的系统调用,进行处理:
如:
kswapd_process页面交换进程,通常是处于睡眠状态的,当某个进程需要更多的内存,而调用try_to_free_pages()时,就会唤醒kswapd_process页面交换进程,调入更多的内存页面。

收到信号所进行的相应处理:
如:
某一进程的时间片到了,process_timeout()会调用wake_up_process()唤醒该进程;
收到某些signal信号:处于STOPPED状态的进程收到SIGKILL或SIGCONT会被唤醒(注:处于STOPPED状态的进程不能被wake_up()唤醒);以及收到某些非实时信号,不需加到signal队列中去,处于TASK_INTERRUPTIBLE的进程有机会被唤醒。

资源有效时,wake_up()对整个等待队列的唤醒是通过对每个等待队列上的进程调用wake_up_process()实现的。

wake_up_interruptible():TASK_INTERRUPTIBLE->; TASK_RUNNING
   将wait_queue中的所有状态为 TASK_INTERRUPTIBLE的进程状态都置为TASK_RUNNING,并将它们都放到running queue中去。
   这个函数通常在send_sig(发出信号)后调用,以使信号发出后能及时得到响应,或者当空闲下来时,希望检查一下是否有收到有效信号的能运行的进程时,也可以调用这个函数,如:
在进程退出前调用notify_parent(),给父进程send_sig()后,将调用wake_up_interruptible (),使信号能够得到及时的响应。
usr\src\linux\KERNEL\EXIT.C 中定义了
void notify_parent(struct task_struct * tsk, int signal)
{
        send_sig(signal, tsk->;p_pptr, 1);
        wake_up_interruptible(&tsk->;p_pptr->;wait_chldexit);
}
   当某一进程要结束时,它可以通过调用notify_parent(current, current->;exit_signal)通知父进程以唤醒睡眠在wait_chldexit上的父进程


2. Semaphores(信号灯)

  信号量用于生成锁机制,避免发生数据不一致。
  信号量最简单的形式就是内存中一个位置,它的取值可以由多个进程检验和设置。检验和设置的操作,至少对于关联的每一个进程来讲,是不可中断或者说有原子性:只要启动就不能中止。检验和设置操作的结果是信号灯当前值和设置值的和,可以是正或者负。根据测试和设置操作的结果,一个进程可能必须睡眠直到信号灯的值被另一个进程改变。信号灯可以用于实现临界区域(critical regions),就是重要的代码区,同一时刻只能有一个进程运行。
   对信号灯的操作是通过以下两组基本函数实现的:
1.void __up(struct semaphore *sem) :TASK_UNINTERRUPTIBLE->; TASK_RUNNING;
                                  TASK_INTERRUPTIBLE->; TASK_RUNNING
    int __do_down(struct semaphore * sem, int task_state)由以下两个函数调用,分别转换到不同的等待状态:
(1)int __down_interruptible (struct semaphore * sem):
   TASK_RUNNING ->;TASK_INTERRUPTIBLE;
(2)void __down(struct semaphore * sem):
   TASK_RUNNING ->;TASK_UNINTERRUPTIBLE;
2. extern inline void up(struct semaphore * sem)
   extern inline void down(struct semaphore * sem);
   extern inline int down_interruptible(struct semaphore * sem);

   Linux信号量是通过两路counter变量实现的:当进程由于申请不到临界区资源而睡眠时,会将semaphore结构中的”count”变量值原子地递减1,进程睡眠等待临界区资源的释放;而当up()函数唤醒睡眠等待进程时,如果”count”变量值小于0,会将semaphore结构中的” waking”变量值原子地递增1,唤醒睡眠进程。虽然所有等待进程都被唤醒。但只有首先得到” waking”的进程才能得到信号量,继续运行下去,其他进程仍然回到最初的等待状态。

Linux定义信号灯结构是:
struct semaphore {
        atomic_t count;
        int waking;
        struct wait_queue * wait;
};
   信号灯的值初始化为一个宏定义的结构MUTEX的值{count=1,waking=0,wait=NULL}。

void __up(struct semaphore *sem):
占有临界区资源的进程,调用__up()释放资源。在__up()函数中,调用wake_one_more ()函数,原子地读sem->;count, 如果sem->;count <=0,则sem->;waking ++,并唤醒所有等待在该sem-->;wait上的进程。
void __up(struct semaphore *sem)
{
        wake_one_more(sem);
        wake_up(&sem->;wait);
}


int __do_down(struct semaphore * sem, int task_state):
申请临界区资源的进程会通过调用__do_down()来竞争资源。在__do_down()函数中,调用waking_non_zero(struct semaphore *sem)或waking_non_zero_interruptible(struct semaphore *sem)抢占临界区资源,如果抢占到,则将当前进程置为TASK_RUNNING,否则将当前进程的状态置为task_state,并处于循环等待状态。
进程通过waking_non_zero()来竞争临界区资源,在该函数中判断sem-->;waking的值,如果sem-->;waking 大于0,sem->;waking -- 并返回1,否则返回0。
int __do_down(struct semaphore * sem, int task_state)
{
        struct task_struct *tsk = current;
        struct wait_queue wait = { tsk, NULL };
        int                  ret = 0 ;

        tsk->;state = task_state;
        add_wait_queue(&sem->;wait, &wait);  /*将进程加入到等待队列*/

        for (;
        {
                if (waking_non_zero(sem))        /* 是否已经被唤醒  */
                    break ;                            /* 是的,跳出循环 */

                if (   task_state == TASK_INTERRUPTIBLE
                    && (tsk->;signal & ~tsk->;blocked)
        /* 如果进程状态为TASK_INTERRUPTIBLE,且收到信号量,并未被屏蔽*/
                   )
                {
                    ret = -EINTR ;                     /* 中断 */
                    atomic_inc(&sem->;count) ;        /* 放弃down操作,原子递增信号量的count值 */
                    break ;
                }

                schedule();                    /* 重新调度 */
                tsk->;state = task_state;      /*未能竞争到信号量的进程重新置成执行down操
                                        作前的状态*/
        }

        tsk->;state = TASK_RUNNING;        /*竞争到信号量的进程置为TASK_RUNNING状态*/
        remove_wait_queue(&sem->;wait, &wait);/*将进程从等待队列中删除*/
        return(ret) ;

} /* __do_down */

其中_do__down()又分别由__down()和__do_down()调用,进程转换到不同状态。
void __down(struct semaphore * sem):    TASK_RUNNING ->;TASK_UNINTERRUPTIBLE;
void __down(struct semaphore * sem)
{
        __do_down(sem,TASK_UNINTERRUPTIBLE) ;
}

int __down_interruptible (struct semaphore * sem): TASK_RUNNING ->;TASK_INTERRUPTIBLE;
int __down_interruptible(struct semaphore * sem)
{
        return(__do_down(sem,TASK_INTERRUPTIBLE)) ;
}

在Linux中定义了两种不同的信号灯:
(1)定义在某个数据结构上:
   在linux系统中有很多数据结构中定义了这样的信号灯,来控制对这个数据结构的资源访问,比如不允许对某个内存单元进行多进程访问,就通过定义在该内存单元上的某个信号灯mmap_sem进行__up()、_down()、up()、down()操作。
如:
struct mm_struct中有mmap_sem信号灯;
struct inode中有i_sem、i_atomic_write信号灯;
struct nlm_file中有f_sema信号灯;
struct nlm_host中有h_sema信号灯;
struct superblock中有s_vfs_rename_sem信号灯;
struct vfsmount中有mnt_dquot.semaphore信号灯;
struct task_struct中有vfork_sem信号灯;//注:这个信号灯在2.0.36版本是没有的,新版本2.2.8中才有的,用于vfork()。
struct unix_opt中有readsem信号灯;
struct smb_sb_info中有sem信号灯;
申请这些数据结构中的临界区资源,就要进行相应的信号灯操作。

(2)定义在全局的单独信号灯数据:
   还有一些单独的全局信号灯,它们并不属于某一个数据结构,而是系统定义的全局静态的信号灯,可能有多个进程对这种不属于某个特定数据结构的全局临界资源的申请,则系统通过这些全局信号灯来分配资源。
如:
nlm_file_sema;
nlmsvc_sema;
lockd_start;
read_sem;
nlm_host_sema;
read_semaphore;
uts_sem
mount_sem;
cache_chain_sem;
rpciod_sema;
rpciod_running;
mfw_sema;
firewall_sem;

   我们来分析一个例子说明信号灯的操作。例如对文件的写操作,我们假设有许多协作的进程对一个单一的数据文件进行写操作。我们希望对文件的访问必须严格地协调。因此这里就利用了inode结构上定义的信号灯inode->;i_sem。
在 /usr/src/linux/mm/filemap.c中:
static int filemap_write_page(struct vm_area_struct * vma,
        unsigned long offset,
        unsigned long page)
{
        int result;
        struct file file;
    struct inode * inode;
        struct buffer_head * bh;

        ……………

        down(&inode->;i_sem);
        result = do_write_page(inode, &file, (const char *) page, offset);
        up(&inode->;i_sem);
        return result;
}

   在该文件写操作的代码中,加入两个信号灯操作,第一个down(&inode->;i_sem)检查并把信号灯的值减小,第二个up(&inode->;i_sem)检查并增加它。访问文件的第一个进

论坛徽章:
0
发表于 2003-04-21 13:20 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

系统调用

    在系统中真正被所有进程都使用的内核通信方式是系统调用。例如当进程请求内核服务时,就使用的是系统调用。一般情况下,进程是不能够存取系统内核的。它不能存取内核使用的内存段,也不能调用内核函数,CPU的硬件结构保证了这一点。只有系统调用是一个例外。进程使用寄存器中适当的值跳转到内核中事先定义好的代码中执行,(当然,这些代码是只读的)。在Intel结构的计算机中,这是由中断0x80实现的。
    进程可以跳转到的内核中的位置叫做system_call。在此位置的过程检查系统调用号,它将告诉内核进程请求的服务是什么。然后,它再查找系统调用表sys_call_table,找到希望调用的内核函数的地址,并调用此函数,最后返回。

    所以,如果希望改变一个系统调用的函数,需要做的是编写一个自己的函数,然后改变sys_call_table中的指针指向该函数,最后再使用cleanup_module将系统调用表恢复到原来的状态


[目录]

--------------------------------------------------------------------------------


系统调用简述

    linux里面的每个系统调用是靠一些宏,,一张系统调用表,一个系统调用入口来完成的。

[目录]

--------------------------------------------------------------------------------




    宏就是_syscallN(type,name,x...),N是系统调用所需的参数数目,type是返回类型,name即面向用户的系统调用函数名,x...是调用参数,个数即为N。
    例如:
#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
type name(type1 arg1,type2 arg2,type3 arg3) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \
        : "=a" (__res) \
        : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \
                  "d" ((long)(arg3))); \
if (__res>;=0) \
        return (type) __res; \
errno=-__res; \
return -1; \
}
(这是2.0.33版本)
    这些宏定义于include\asm\Unistd.h,这就是为什么你在程序中要包含这个头文件的原因。该文件中还以__NR_name的形式定义了164个常数,这些常数就是系统调用函数name的函数指针在系统调用表中的偏移量。

[目录]

--------------------------------------------------------------------------------


系统调用表

    系统调用表定义于entry.s的最后。
    这个表按系统调用号(即前面提到的__NR_name)排列了所有系统调用函数的指针,以供系统调用入口函数查找。从这张表看得出,linux给它所支持的系统调用函数取名叫sys_name。



[目录]

--------------------------------------------------------------------------------


系统调用入口函数

    系统调用入口函数定义于entry.s:
ENTRY(system_call)
        pushl %eax                      # save orig_eax
        SAVE_ALL
#ifdef __SMP__
        ENTER_KERNEL
#endif
        movl $-ENOSYS,EAX(%esp)
        cmpl $(NR_syscalls),%eax
        jae ret_from_sys_call
        movl SYMBOL_NAME(sys_call_table)(,%eax,4),%eax
        testl %eax,%eax
        je ret_from_sys_call
#ifdef __SMP__
        GET_PROCESSOR_OFFSET(%edx)
        movl SYMBOL_NAME(current_set)(,%edx),%ebx
#else
        movl SYMBOL_NAME(current_set),%ebx
#endif
        andl $~CF_MASK,EFLAGS(%esp)
        movl %db6,%edx
        movl %edx,dbgreg6(%ebx)
        testb $0x20,flags(%ebx)
        jne 1f
        call *%eax
        movl %eax,EAX(%esp)
        jmp ret_from_sys_call
    这段代码现保存所有的寄存器值,然后检查调用号(__NR_name)是否合法(在系统调用表中查找),找到正确的函数指针后,就调用该函数(即你真正希望内核帮你运行的函数)。运行返回后,将调用ret_from_sys_call,这里就是著名的进程调度时机之一。
    当在程序代码中用到系统调用时,编译器会将上面提到的宏展开,展开后的代码实际上是将系统调用号放入ax后移用int 0x80使处理器转向系统调用入口,然后查找系统调用表,进而由内核调用真正的功能函数。
    自己添加过系统调用的人可能知道,要在程序中使用自己的系统调用,必须显示地应用宏_syscallN。
    而对于linux预定义的系统调用,编译器在预处理时自动加入宏_syscall3(int,ioctl,arg1,arg2,arg3)并将其展开。所以,并不是ioctl本身是宏替换符,而是编译器自动用宏声明了ioctl这个函数。




[目录]

--------------------------------------------------------------------------------


系统调用实现过程


[目录]

--------------------------------------------------------------------------------


函数名约定

系统调用响应函数的函数名约定
    函数名以“sys_”开头,后跟该系统调用的名字,由此构成164个形似sys_name()的函数名。因此,系统调用ptrace()的响应函数是sys_ptrace() (kernel/ptrace.c)。



[目录]

--------------------------------------------------------------------------------


系统调用号

系统调用号
    文件include/asm/unistd.h为每个系统调用规定了唯一的编号:
#define __NR_setup                  0
#define __NR_exit                            1
#define __NR_fork                  2
…        …
#define __NR_ptrace                  26

    以系统调用号__NR_name作为下标,找出系统调用表sys_call_table (arch/i386/kernel/entry.S)中对应表项的内容,正好就是该系统调用的响应函数sys_name的入口地址。



[目录]

--------------------------------------------------------------------------------


系统调用表

系统调用表
    系统调用表sys_call_table (arch/i386/kernel/entry.S)形如:
ENTRY(sys_call_table)
        .long SYMBOL_NAME(sys_setup)                /* 0 */
        .long SYMBOL_NAME(sys_exit)
        .long SYMBOL_NAME(sys_fork)
                …        …
                .long SYMBOL_NAME(sys_stime)                /* 25 */
        .long SYMBOL_NAME(sys_ptrace)
                …        …

    sys_call_table记录了各sys_name函数(共166项,其中2项无效)在表中的位子。有了这张表,很容易根据特定系统调用在表中的偏移量,找到对应的系统调用响应函数的入口地址。NR_syscalls(即256)表示最多可容纳的系统调用个数。这样,余下的90项就是可供用户自己添加的系统调用空间。



[目录]

--------------------------------------------------------------------------------


从ptrace系统调用命令到INT 0X80中断请求的转换

从ptrace系统调用命令到INT  0X80中断请求的转换
    宏定义syscallN()(include/asm/unistd.h)用于系统调用的格式转换和参数的传递。
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
type name (type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \
        : "=a" (__res) \
        : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \
          "d" ((long)(arg3)),"S" ((long)(arg4))); \
__syscall_return(type,__res); \
}

    N取0与5之间任意整数。参数个数为N的系统调用由syscallN负责格式转换和参数传递。例如,ptrace()有四个参数,它对应的格式转换宏就是syscall4()。

    syscallN()第一个参数说明响应函数返回值的类型,第二个参数为系统调用的名称(即name),其余的参数依次为系统调用参数的类型和名称。例如,

_syscall4(int, ptrace, long request, long pid, long addr, long data)

    说明了系统调用命令

int sys_ptrace(long request, long pid, long addr, long data)

    宏定义的余下部分描述了启动INT 0X80和接收、判断返回值的过程。也就是说,以系统调用号对EAX寄存器赋值,启动INT 0X80。规定返回值送EAX寄存器。函数的参数压栈,压栈顺序见下表:
参数        参数在堆栈的位置        传递参数的寄存器

arg1        00(%esp)        ebx
arg2        04(%esp)        ecx
arg3        08(%esp)        edx
arg4        0c(%esp)        esi
arg5        10(%esp)        edi

    若INT 0X80的返回值非负,则直接按类型type返回;否则,将INT 0X80的返回值取绝对值,保留在errno变量中,返回-1。



[目录]

--------------------------------------------------------------------------------


系统调用功能模块的初始化

系统调用功能模块的初始化
    对系统调用的初始化也即对INT 0X80的初始化。系统启动时,汇编子程序setup_idt(arch/i386/kernel/head.S)准备了张256项的idt 表,由start_kernel()(init/main.c)、trap_init()(arch/i386/kernel/traps.c)调用的C语言宏定义set_system_gate(0x80, &system_call)(include/asm/system.h)设置0X80号软中断的服务程序为system_call。system_call(arch/i386/kernel/entry.S)就是所有系统调用的总入口。



[目录]

--------------------------------------------------------------------------------


内核服务

LINUX内部是如何分别为各种系统调用服务的
    当进程需要进行系统调用时,必须以C语言函数的形式写一句系统调用命令。当进程执行到用户程序的系统调用命令时,实际上执行了由宏命令_syscallN()展开的函数。系统调用的参数由各通用寄存器传递。然后执行INT 0X80,以核心态进入入口地址system_call。
ENTRY(system_call)
        pushl %eax                        # save orig_eax
        SAVE_ALL
#ifdef __SMP__
        ENTER_KERNEL
#endif
        movl $-ENOSYS,EAX(%esp)
        cmpl $(NR_syscalls),%eax
        jae ret_from_sys_call
        movl SYMBOL_NAME(sys_call_table)(,%eax,4),%eax
        testl %eax,%eax
        je ret_from_sys_call
#ifdef __SMP__
        GET_PROCESSOR_OFFSET(%edx)
        movl SYMBOL_NAME(current_set)(,%edx),%ebx
#else
        movl SYMBOL_NAME(current_set),%ebx
#endif
        andl $~CF_MASK,EFLAGS(%esp)        # clear carry - assume no errors
        movl %db6,%edx
        movl %edx,dbgreg6(%ebx)  # save current hardware debugging status
        testb $0x20,flags(%ebx)                # PF_TRACESYS
        jne 1f
        call *%eax
        movl %eax,EAX(%esp)                # save the return value
        jmp ret_from_sys_call
    从system_call入口的汇编程序的主要功能是:
    ·保存寄存器当前值(SAVE_ALL);
    ·检验是否为合法的系统调用;
    ·根据系统调用表_sys_call_table和EAX持有的系统调用号找出并转入系统调用响应函数;
    ·从该响应函数返回后,让EAX寄存器保存函数返回值,跳转至ret_from_sys_call(arch/i386/kernel/entry.S)。
    ·最后,在执行位于用户程序中系统调用命令后面余下的指令之前,若INT 0X80的返回值非负,则直接按类型type返回;否则,将INT 0X80的返回值取绝对值,保留在errno变量中,返回-1。




[目录]

--------------------------------------------------------------------------------


代码分析:mlock()

    系统调用mlock的作用是屏蔽内存中某些用户进程所要求的页。
    mlock调用的语法为:
        int sys_mlock(unsigned long start, size_t len);
    初始化为:

len=(len+(start &~PAGE_MASK)+ ~PAGE_MASK)&AGE_MASK;
start &=PAGE_MASK;

    其中mlock又调用do_mlock(),语法为:

int do_mlock(unsigned long start, size_t len,int on);

    初始化为:

len=(len+~PAGE_MASK)&AGE_MASK;

    由mlock的参数可看出,mlock对由start所在页的起始地址开始,长度为len(注:len=(len+(start&~PAGE_MASK)+ ~PAGE_MASK)&AGE_MASK)的内存区域的页进行加锁。
    sys_mlock如果调用成功返回,这其中所有的包含具体内存区域的页必须是常驻内存的,或者说在调用munlock 或 munlockall之前这部分被锁住的页面必须保留在内存。当然,如果调用mlock的进程终止或者调用exec执行其他程序,则这部分被锁住的页面被释放。通过fork()调用所创建的子进程不能够继承由父进程调用mlock锁住的页面。
    内存屏蔽主要有两个方面的应用:实时算法和高度机密数据的处理。实时应用要求严格的分时,比如调度,调度页面是程序执行延时的一个主要因素。保密安全软件经常处理关键字节,比如密码或者密钥等数据结构。页面调度的结果是有可能将这些重要字节写到外存(如硬盘)中去。这样一些黑客就有可能在这些安全软件删除这些在内存中的数据后还能访问部分在硬盘中的数据。        而对内存进行加锁完全可以解决上述难题。
    内存加锁不使用压栈技术,即那些通过调用mlock或者mlockall被锁住多次的页面可以通过调用一次munlock或者munlockall释放相应的页面
    mlock的返回值分析:若调用mlock成功,则返回0;若不成功,则返回-1,并且errno被置位,进程的地址空间保持原来的状态。返回错误代码分析如下:
    ·ENOMEM:部分具体地址区域没有相应的进程地址空间与之对应或者超出了进程所允许的最大可锁页面。
    ·EPERM:调用mlock的进程没有正确的优先权。只有root进程才允许锁住要求的页面。
    ·EINVAL:输入参数len不是个合法的正数。






[目录]

--------------------------------------------------------------------------------


主要数据结构

1.mm_struct
struct mm_struct {
        int count;
        pgd_t * pgd; /* 进程页目录的起始地址*/
        unsigned long context;
        unsigned long start_code, end_code, start_data, end_data;
        unsigned long start_brk, brk, start_stack, start_mmap;
        unsigned long arg_start, arg_end, env_start, env_end;
        unsigned long rss, total_vm, locked_vm;
        unsigned long def_flags;
        struct vm_area_struct * mmap;     /* 指向vma双向链表的指针 */
        struct vm_area_struct * mmap_avl; /* 指向vma AVL树的指针 */
        struct semaphore mmap_sem;
}
·start_code、end_code:进程代码段的起始地址和结束地址。
·start_data、end_data:进程数据段的起始地址和结束地址。
·arg_start、arg_end:调用参数区的起始地址和结束地址。
·env_start、env_end:进程环境区的起始地址和结束地址。
·rss:进程内容驻留在物理内存的页面总数。

2. 虚存段(vma)数据结构:vm_area_atruct
    虚存段vma由数据结构vm_area_atruct(include/linux/mm.h)描述:

struct vm_area_struct {
        struct mm_struct * vm_mm;        /* VM area parameters */
        unsigned long vm_start;
        unsigned long vm_end;
        pgprot_t vm_page_prot;
        unsigned short vm_flags;
/* AVL tree of VM areas per task, sorted by address */
        short vm_avl_height;
        struct vm_area_struct * vm_avl_left;
        struct vm_area_struct * vm_avl_right;
/* linked list of VM areas per task, sorted by address */
        struct vm_area_struct * vm_next;
/* for areas with inode, the circular list inode->;i_mmap */
/* for shm areas, the circular list of attaches */
/* otherwise unused */
        struct vm_area_struct * vm_next_share;
        struct vm_area_struct * vm_prev_share;
/* more */
        struct vm_operations_struct * vm_ops;
        unsigned long vm_offset;
        struct inode * vm_inode;
        unsigned long vm_pte;                        /* shared mem */
};

vm_start;//所对应内存区域的开始地址
vm_end; //所对应内存区域的结束地址
vm_flags; //进程对所对应内存区域的访问权限
vm_avl_height;//avl树的高度
vm_avl_left; //avl树的左儿子
vm_avl_right; //avl树的右儿子
vm_next;// 进程所使用的按地址排序的vm_area链表指针
vm_ops;//一组对内存的操作
    这些对内存的操作是当对虚存进行操作的时候Linux系统必须使用的一组方法。比如说,当进程准备访问某一虚存区域但是发现此区域在物理内存不存在时(缺页中断),就激发某种对内存的操作执行正确的行为。这种操作是空页(nopage)操作。当Linux系统按需调度可执行的页面映象进入内存时就使用这种空页(nopage)操作。
    当一个可执行的页面映象映射到进程的虚存地址时,一组vm_area_struct结构的数据结构(vma)就会生成。每一个vm_area_struct的数据结构(vma)代表可执行的页面映象的一部分:可执行代码,初始化数据(变量),非初始化数据等等。Linux系统可以支持大量的标准虚存操作,当vm_area_struct数据结构(vma)一被创建,它就对应于一组正确的虚存操作。
    属于同一进程的vma段通过vm_next指针连接,组成链表。如图2-3所示,struct mm_struct结构的成员struct vm_area_struct * mmap  表示进程的vma链表的表头。
    为了提高对vma段 查询、插入、删除操作的速度,LINUX同时维护了一个AVL(Adelson-Velskii and Landis)树。在树中,所有的vm_area_struct虚存段均有左指针vm_avl_left指向相邻的低地址虚存段,右指针vm_avl_right指向相邻的高地址虚存段,如图2-5。struct mm_struct结构的成员struct vm_area_struct * mmap_avl表示进程的AVL树的根,vm_avl_height表示AVL树的高度。
    对平衡树mmap_avl的任何操作必须满足平衡树的一些规则:
Consistency and balancing rulesJ(一致性和平衡规则):

tree->;vm_avl_height==1+max(heightof(tree->;vm_avl_left),heightof(
tree->;vm_avl_right))
abs( heightof(tree->;vm_avl_left) - heightof(tree->;vm_avl_right) ) <= 1
foreach node in tree->;vm_avl_left: node->;vm_avl_key <= tree->;vm_avl_key,        foreach node in tree->;vm_avl_right: node->;vm_avl_key >;= tree->;vm_avl_key.
        注:其中node->;vm_avl_key= node->;vm_end

对vma可以进行加锁、加保护、共享和动态扩展等操作。




[目录]

--------------------------------------------------------------------------------


重要常量

    mlock系统调用所用到的重要常量有:PAGE_MASK、PAGE_SIZE、PAGE_SHIFT、RLIMIT_MEMLOCK、VM_LOCKED、 PF_SUPERPRIV等。它们的值分别如下:
        PAGE_SHIFT                        12                                // PAGE_SHIFT determines the page size
        PAGE_SIZE                        0x1000                        //1UL<<AGE_SHIFT
        PAGE_MASK                        ~(PAGE_SIZE-1)        //a very useful constant variable
        RLIMIT_MEMLOCK                8                                //max locked-in-memory address space
        VM_LOCKED                        0x2000                        //8*1024=8192, vm_flags的标志之一。
        PF_SUPERPRIV                0x00000100                //512


[目录]

--------------------------------------------------------------------------------


代码函数功能分析

mlock系统调用代码函数功能分析
    下面对各个函数的功能作详细的分析((1)和(2)在前面简介mlock时已介绍过,并在后面有详细的程序流程):

suser():如果用户有效(即current->;euid == 0        ),则设置进程标志为root优先权(current->;flags |= PF_SUPERPRIV),并返回1;否则返回0。

find_vma(struct mm_struct * mm, unsigned long addr):输入参数为当前进程的mm、需要加锁的开始内存地址addr。find_vma的功能是在mm的mmap_avl树中寻找第一个满足mm->;mmap_avl->;vm_start<=addr< mm->;mmap_avl->;vm_end的vma,如果成功则返回此vma;否则返回空null。

mlock_fixup(struct vm_area_struct * vma, unsigned long start, unsigned long end, unsigned int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域起始地址和结束地址、需要修改的标志(0:加锁,1:释放锁)。

merge_segments(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr):输入参数为当前进程的mm、需要加锁的开始内存地址start_addr和结束地址end_addr。merge_segments的功能的是尽最大可能归并相邻(即内存地址偏移量连续)并有相同属性(包括vm_inode,vm_pte,vm_ops,vm_flags)的内存段,在这过程中冗余的vm_area_structs被释放,这就要求vm_mmap链按地址大小排序(我们不需要遍历整个表,而只需要遍历那些交叉或者相隔一定连续区域的邻接vm_area_structs)。当然在缺省的情况下,merge_segments是对vm_mmap_avl树进行循环处理,有多少可以合并的段就合并多少。

mlock_fixup_all(struct vm_area_struct * vma, int newflags):输入参数为vm_mmap链中的某个vma、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_all的功能是根据输入参数newflags修改此vma的vm_flags。

mlock_fixup_start(struct vm_area_struct * vma,unsigned long end, int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域结束地址、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_start的功能是根据输入参数end,在内存中分配一个新的new_vma,把原来的vma分成两个部分: new_vma和vma,其中new_vma的vm_flags被设置成输入参数newflags;并且按地址(new_vma->;start和new_vma->;end)大小序列把新生成的new->;vma插入到当前进程mm的mmap链或mmap_avl树中(缺省情况下是插入到mmap_avl树中)。
        注:vma->;vm_offset+= vma->;vm_start-new_vma->;vm_start;
mlock_fixup_end(struct vm_area_struct * vma,unsigned long start, int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域起始地址、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_end的功能是根据输入参数start,在内存中分配一个新的new_vma,把原来的vma分成两个部分:vma和new_vma,其中new_vma的vm_flags被设置成输入参数newflags;并且按地址大小序列把new->;vma插入到当前进程mm的mmap链或mmap_avl树中。
        注:new_vma->;vm_offset= vma->;vm_offset+(new_vma->;vm_start-vma->;vm_start);
mlock_fixup_middle(struct vm_area_struct * vma,unsigned long start, unsigned long end, int newflags):输入参数为vm_mmap链中的某个vma、需要加锁内存区域起始地址和结束地址、需要修改的标志(0:加锁,1:释放锁)。mlock_fixup_middle的功能是根据输入参数start、end,在内存中分配两个新vma,把原来的vma分成三个部分:left_vma、vma和right_vma,其中vma的vm_flags被设置成输入参数newflags;并且按地址大小序列把left->;vma和right->;vma插入到当前进程mm的mmap链或mmap_avl树中。
        注:vma->;vm_offset += vma->;vm_start-left_vma->;vm_start;
                right_vma->;vm_offset += right_vma->;vm_start-left_vma->;vm_start;

kmalloc():常用的一个内核函数

insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vmp):输入参数为当前进程的mm、需要插入的vmp。insert_vm_struct的功能是按地址大小序列把vmp插入到当前进程mm的mmap链或mmap_avl树中,并且把vmp插入到vmp->;inode的i_mmap环(循环共享链)中。

avl_insert_neighbours(struct vm_area_struct * new_node,** ptree,** to_the_left,** to_the_right):输入参数为当前需要插入的新vma结点new_node、目标mmap_avl树ptree、新结点插入ptree后它左边的结点以及它右边的结点(左右边结点按mmap_avl中各vma->;vma_end大小排序)。avl_insert_neighbours的功能是插入新vma结点new_node到目标mmap_avl树ptree中,并且调用avl_rebalance以保持ptree的平衡树特性,最后返回new_node左边的结点以及它右边的结点。

avl_rebalance(struct vm_area_struct *** nodeplaces_ptr, int count):输入参数为指向vm_area_struct指针结构的指针数据nodeplaces_ptr[](每个元素表示需要平衡的mmap_avl子树)、数据元素个数count。avl_rebalance的功能是从nodeplaces_ptr[--count]开始直到nodeplaces_ptr[0]循环平衡各个mmap_avl子树,最终使整个mmap_avl树平衡。

down(struct semaphore * sem):输入参数为同步(进入临界区)信号量sem。down的功能根据当前信号量的设置情况加锁(阻止别的进程进入临界区)并继续执行或进入等待状态(等待别的进程执行完成退出临界区并释放锁)。
        down定义在/include/linux/sched.h中:
extern inline void down(struct semaphore * sem)
{
        if (sem->;count <= 0)
                __down(sem);
        sem->;count--;
}

up(struct semaphore * sem)输入参数为同步(进入临界区)信号量sem。up的功能根据当前信号量的设置情况(当信号量的值为负数:表示有某个进程在等待使用此临界区 )释放锁。
        up定义在/include/linux/sched.h中:
extern inline void up(struct semaphore * sem)
{
        sem->;count++;
        wake_up(&sem->;wait);
        }

kfree_s(a,b):kfree_s定义在/include/linux/malloc.h中:#define kfree_s(a,b) kfree(a)。而kfree()将在后面3.3中详细讨论。

avl_neighbours(struct vm_area_struct * node,* tree,** to_the_left,** to_the_right):输入参数为作为查找条件的vma结点node、目标mmap_avl树tree、node左边的结点以及它右边的结点(左右边结点按mmap_avl中各vma->;vma_end大小排序)。avl_ neighbours的功能是根据查找条件node在目标mmap_avl树ptree中找到node左边的结点以及它右边的结点,并返回。

avl_remove(struct vm_area_struct * node_to_delete, ** ptree):输入参数为需要删除的结点node_to_delete和目标mmap_avl树ptree。avl_remove的功能是在目标mmap_avl树ptree中找到结点node_to_delete并把它从平衡树中删除,并且调用avl_rebalance以保持ptree的平衡树特性。

remove_shared_vm_struct(struct vm_area_struct *mpnt):输入参数为需要从inode->;immap环中删除的vma结点mpnt。remove_shared_vm_struct的功能是从拥有vma结点mpnt 的inode->;immap环中删除的该结点。




[目录]

--------------------------------------------------------------------------------


添加新调用


[目录]

--------------------------------------------------------------------------------


例子一

深入LINUX内核:为你的LINUX增加一条系统调用
  充分利用LINUX开放源码的特性,我们可以轻易地对它进行修改,使我们能够随心所欲驾驭LINUX,完成一个真正属于自己的操作系统,这种感觉使无与伦比的,下面通过为LINUX增加一个系统调用来展示LINUX作为一个开放源码操作系统的强大魅力。
  首先,让我们简单地分析一下LINUX中与系统调用的相关的部分:
  LINUX的系统调用的总控程序是system_call,它是LINUX系统中所有系统调用的总入口,这个system_call是作为一个中断服务程序挂在中断0x80上,系统初始化时通过void init trap_init(void)调用一个宏set_system_ gate(SYSCALL_VERCTOR,&system_call)来对IDT表进行初始化,在0x80对应的中断描述符处填入system_call函数的地址,其中宏SYSCALL_VERCTOR就是0x80。
  当发生一条系统调用时,由中断总控程序保存处理机状态,检查调用参数的合法性,然后根据系统调用向量在sys_call_table中找到相应的系统服务例程的地址,然后执行该服务例程,完成后恢复中断总控程序所保存的处理机状态,返回用户程序。
  系统服务例程一般定义于kernel/sys.c中,系统调用向量定义在include/asm-386/unistd.h中,而sys_call _table表则定义在arch/i386/kernel/entry.S文件里。
  现在我们知道增加一条系统调用我们首先要添加服务例程实现代码,然后在进行对应向量的申明,最后当然还要在sys_call_table表中增加一项以指明服务例程的入口地址。
  OK,有了以上简单的分析,现在我们可以开始进行源码的修改,假设我们需要添加一条系统调用计算两个整数的平方和,系统调用名为add2,我们需要修改三个文件:kernel/sys.c , arch/i386/kernel/entry.S 和 include/asm-386/unistd.h。
  1、修改kernel/sys.c ,增加服务例程代码:
  asmlinkage int sys_add2(int a , int b)
    {
      int c=0;
      c=a*a+b*b;
      return c;
    }
  2、修改include/asm-386/unistd.h ,对我们刚才增加的系统调用申明向量,以使用户或系统进程能够找到这条系统调用,修改后文件如下所示:
  .... .....
  #define _NR_sendfile   187
  #define _NR_getpmsg    188
  #define _NR_putmsg    189
  #define _NR_vfork     190
  #define _NR_add2     191   /* 这是我们添加的部分,191即向量 */
  3、修改include/asm-386/unistd.h , 将服务函数入口地址加入 sys_call_table,首先找到这么一段:
  .... .....
  .long SYMBOL_NAME(sys_sendfile)
  .long SYMBOL_NAME(sys_ni_syscall) /* streams 1 */
  .long SYMBOL_NAME(sys_ni_syscall) /* streams 2 */
  .long SYMBOL_NAME(sys_vfork) /*190 */
  .rept NR_syscalls-190
  修改为如下:
  .... .....
  .long SYMBOL_NAME(sys_sendfile)
  .long SYMBOL_NAME(sys_ni_syscall) /* streams 1 */
  .long SYMBOL_NAME(sys_ni_syscall) /* streams 2 */
  .long SYMBOL_NAME(sys_vfork) /*190 */
  .long SYMBOL_NAME(sys_add2) <=我们的系统调用
  .rept NR_syscalls-191 <=将190改为191
  OK,大功告成,现在只需要重新编译你的LINUX内核,然后你的LINUX就有了一条新的系统调用int add2(int a, int b)。


[目录]

--------------------------------------------------------------------------------


例子二

如何在Linux中添加新的系统调用
  系统调用是应用程序和操作系统内核之间的功能接口。其主要目的是使得用户可以使用操作系统提供的有关设备管理、输入/输入系统、文件系统和进程控制、通信以及存储管理等方面的功能,而不必了解系统程序的内部结构和有关硬件细节,从而起到减轻用户负担和保护系统以及提高资源利用率的作用。

1 Linux系统调用机制
  在Linux系统中,系统调用是作为一种异常类型实现的。它将执行相应的机器代码指令来产生异常信号。产生中断或异常的重要效果是系统自动将用户态切换为核心态来对它进行处理。这就是说,执行系统调用异常指令时,自动地将系统切换为核心态,并安排异常处理程序的执行。
  Linux用来实现系统调用异常的实际指令是:
  Int $0x80
  这一指令使用中断/异常向量号128(即16进制的80)将控制权转移给内核。为达到在使用系统调用时不必用机器指令编程,在标准的C语言库中为每一系统调用提供了一段短的子程序,完成机器代码的编程工作。事实上,机器代码段非常简短。它所要做的工作只是将送给系统调用的参数加载到CPU寄存器中,接着执行int $0x80指令。然后运行系统调用,系统调用的返回值将送入CPU的一个寄存器中,标准的库子程序取得这一返回值,并将它送回用户程序。
  为使系统调用的执行成为一项简单的任务,Linux提供了一组预处理宏指令。它们可以用在程序中。这些宏指令取一定的参数,然后扩展为调用指定的系统调用的函数。
  这些宏指令具有类似下面的名称格式:
  _syscallN(parameters)
  其中N是系统调用所需的参数数目,而parameters则用一组参数代替。这些参数使宏指令完成适合于特定的系统调用的扩展。例如,为了建立调用setuid()系统调用的函数,应该使用:
  _syscall1( int, setuid, uid_t, uid )
  syscallN( )宏指令的第1个参数int说明产生的函数的返回值的类型是整型,第2个参数setuid说明产生的函数的名称。后面是系统调用所需要的每个参数。这一宏指令后面还有两个参数uid_t和uid分别用来指定参数的类型和名称。
  另外,用作系统调用的参数的数据类型有一个限制,它们的容量不能超过四个字节。这是因为执行int $0x80指令进行系统调用时,所有的参数值都存在32位的CPU寄存器中。使用CPU寄存器传递参数带来的另一个限制是可以传送给系统调用的参数的数目。这个限制是最多可以传递5个参数。所以Linux一共定义了6个不同的_syscallN()宏指令,从_syscall0()、_syscall1()直到_syscall5()。
  一旦_syscallN()宏指令用特定系统调用的相应参数进行了扩展,得到的结果是一个与系统调用同名的函数,它可以在用户程序中执行这一系统调用。

2 添加新的系统调用
  如果用户在Linux中添加新的系统调用,应该遵循几个步骤才能添加成功,下面几个步骤详细说明了添加系统调用的相关内容。
(1) 添加源代码
  第一个任务是编写加到内核中的源程序,即将要加到一个内核文件中去的一个函数,该函数的名称应该是新的系统调用名称前面加上sys_标志。假设新加的系统调用为mycall(int number),在/usr/src/linux/kernel/sys.c文件中添加源代码,如下所示:
  asmlinkage int sys_mycall(int number)
  {
  return number;
  }
  作为一个最简单的例子,我们新加的系统调用仅仅返回一个整型值。
(2) 连接新的系统调用
  添加新的系统调用后,下一个任务是使Linux内核的其余部分知道该程序的存在。为了从已有的内核程序中增加到新的函数的连接,需要编辑两个文件。
  在我们所用的Linux内核版本(RedHat 6.0,内核为2.2.5-15)中,第一个要修改的文件是:
  /usr/src/linux/include/asm-i386/unistd.h
  该文件中包含了系统调用清单,用来给每个系统调用分配一个唯一的号码。文件中每一行的格式如下:
  #define __NR_name NNN
  其中,name用系统调用名称代替,而NNN则是该系统调用对应的号码。应该将新的系统调用名称加到清单的最后,并给它分配号码序列中下一个可用的系统调用号。我们的系统调用如下:
  #define __NR_mycall 191
  系统调用号为191,之所以系统调用号是191,是因为Linux-2.2内核自身的系统调用号码已经用到190。
  第二个要修改的文件是:
  /usr/src/linux/arch/i386/kernel/entry.S
  该文件中有类似如下的清单:
  .long SYMBOL_NAME()
  该清单用来对sys_call_table[]数组进行初始化。该数组包含指向内核中每个系统调用的指针。这样就在数组中增加了新的内核函数的指针。我们在清单最后添加一行:

  .long SYMBOL_NAME(sys_mycall)

(3) 重建新的Linux内核
  为使新的系统调用生效,需要重建Linux的内核。这需要以超级用户身份登录。
  #pwd
  /usr/src/linux
  #
  超级用户在当前工作目录(/usr/src/linux)下,才可以重建内核。
  #make config
  #make dep
  #make clearn
  #make bzImage
  编译完毕后,系统生成一可用于安装的、压缩的内核映象文件:
  /usr/src/linux/arch/i386/boot/bzImage
(4) 用新的内核启动系统
  要使用新的系统调用,需要用重建的新内核重新引导系统。为此,需要修改/etc/lilo.conf文件,在我们的系统中,该文件内容如下:
  boot=/dev/hda
  map=/boot/map
  install=/boot/boot.b
  prompt
  timeout=50
  image=/boot/vmlinuz-2.2.5-15
  label=linux
  root=/dev/hdb1
  read-only
  other=/dev/hda1
  label=dos
  table=/dev/had
  首先编辑该文件,添加新的引导内核:
  image=/boot/bzImage-new
  label=linux-new
  root=/dev/hdb1
  read-only
  添加完毕,该文件内容如下所示:
  boot=/dev/hda
  map=/boot/map
  install=/boot/boot.b
  prompt
  timeout=50
  image=/boot/bzImage-new
  label=linux-new
  root=/dev/hdb1
  read-only
  image=/boot/vmlinuz-2.2.5-15
  label=linux
  root=/dev/hdb1
  read-only
  other=/dev/hda1
  label=dos
  table=/dev/hda
  这样,新的内核映象bzImage-new成为缺省的引导内核。
  为了使用新的lilo.conf配置文件,还应执行下面的命令:
  #cp /usr/src/linux/arch/i386/boot/zImage /boot/bzImage-new
  其次配置lilo:
  # /sbin/lilo
  现在,当重新引导系统时,在boot:提示符后面有三种选择:linux-new 、 linux、dos,新内核成为缺省的引导内核。
  至此,新的Linux内核已经建立,新添加的系统调用已成为操作系统的一部分,重新启动Linux,用户就可以在应用程序中使用该系统调用了。
(5)使用新的系统调用
  在应用程序中使用新添加的系统调用mycall。同样为实验目的,我们写了一个简单的例子xtdy.c。
  /* xtdy.c */
  #include <linux/unistd.h>;
  _syscall1(int,mycall,int,ret)
  main()
  {
  printf("%d \n",mycall(100));
  }
  编译该程序:
  # cc -o xtdy xtdy.c
  执行:

  # xtdy
  结果:
  # 100
  注意,由于使用了系统调用,编译和执行程序时,用户都应该是超级用户身份。
(文/程仁田)

论坛徽章:
0
发表于 2003-04-21 13:24 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

驱动

    Linux系统支持三种类型的硬件设备:字符设备、块设备和网络设备。字符设备是直接读取的,不必使用缓冲区。例如,系统的串行口/dev/cua0和/dev/cua1。块设备每次只能读取一定大小的块的倍数,通常一块是512或者1024字节。块设备通过缓冲区读写,并且可以随机地读写。块设备可以通过它们的设备文件存取,但通常是通过文件系统存取。只有块设备支持挂接的文件系统。网络设备是通过BSD套接字界面存取的。
    Linux系统支持多种设备,这些设备的驱动程序之间有一些共同的特点:
    * 内核代码:设备驱动程序是系统内核的一部分,所以如果驱动程序出现错误的话,将可能严重地破坏整个系统。
    * 内核接口:设备驱动程序必须为系统内核或者它们的子系统提供一个标准的接口。例如,一个终端驱动程序必须为Linux内核提供一个文件I/O接口;一个SCSI设备驱动程序应该为SCSI子系统提供一个SCSI设备接口,同时SCSI子系统也应为系统内核提供文件I/O和缓冲区。
    * 内核机制和服务:设备驱动程序利用一些标准的内核服务,例如内存分配等。
    * 可装入:大多数的Linux设备驱动程序都可以在需要时装入内核,在不需要时卸载。
    * 可设置:Linux系统设备驱动程序可以集成为系统内核的一部分,至于哪一部分需要集成到内核中,可以在系统编译时设置。


[目录]

--------------------------------------------------------------------------------


I/O端口

  关键词:设备管理、驱动程序、I/O端口、资源
  申明:这份文档是按照自由软件开放源代码的精神发布的,任何人可以免费获得、使用和重新发布,但是你没有限制别人重新发布你发布内容的权利。发布本文的目的是希望它能对读者有用,但没有任何担保,甚至没有适合特定目的的隐含的担保。更详细的情况请参阅GNU通用公共许可证(GPL),以及GNU自由文档协议(GFDL)。

  几乎每一种外设都是通过读写设备上的寄存器来进行的。外设寄存器也称为“I/O端口”,通常包括:控制寄存器、状态寄存器和数据寄存器三大类,而且一个外设的寄存器通常被连续地编址。CPU对外设IO端口物理地址的编址方式有两种:一种是I/O映射方式(I/O-mapped),另一种是内存映射方式(Memory-mapped)。而具体采用哪一种则取决于CPU的体系结构。

  有些体系结构的CPU(如,PowerPC、m68k等)通常只实现一个物理地址空间(RAM)。在这种情况下,外设I/O端口的物理地址就被映射到CPU的单一物理地址空间中,而成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。这就是所谓的“内存映射方式”(Memory-mapped)。

  而另外一些体系结构的CPU(典型地如X86)则为外设专门实现了一个单独地地址空间,称为“I/O地址空间”或者“I/O端口空间”。这是一个与CPU地RAM物理地址空间不同的地址空间,所有外设的I/O端口均在这一空间中进行编址。CPU通过设立专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元(也即I/O端口)。这就是所谓的“I/O映射方式”(I/O-mapped)。与RAM物理地址空间相比,I/O地址空间通常都比较小,如x86 CPU的I/O空间就只有64KB(0-0xffff)。这是“I/O映射方式”的一个主要缺点。

  Linux将基于I/O映射方式的或内存映射方式的I/O端口通称为“I/O区域”(I/O region)。在讨论对I/O区域的管理之前,我们首先来分析一下Linux是如何实现“I/O资源”这一抽象概念的。

3.1 Linux对I/O资源的描述

  Linux设计了一个通用的数据结构resource来描述各种I/O资源(如:I/O端口、外设内存、DMA和IRQ等)。该结构定义在include/linux/ioport.h头文件中:


  struct resource {
        const char *name;
        unsigned long start, end;
        unsigned long flags;
        struct resource *parent, *sibling, *child;
  };

  各成员的含义如下:

  1. name指针:指向此资源的名称。
  2. start和end:表示资源的起始物理地址和终止物理地址。它们确定了资源的范围,也即是一个闭区间[start,end]。
  3. flags:描述此资源属性的标志(见下面)。
  4. 指针parent、sibling和child:分别为指向父亲、兄弟和子资源的指针。

  属性flags是一个unsigned long类型的32位标志值,用以描述资源的属性。比如:资源的类型、是否只读、是否可缓存,以及是否已被占用等。下面是一部分常用属性标志位的定义(ioport.h):


/*
* IO resources have these defined flags.
*/
#define IORESOURCE_BITS                0x000000ff        /* Bus-specific bits */

#define IORESOURCE_IO                0x00000100        /* Resource type */
#define IORESOURCE_MEM                0x00000200
#define IORESOURCE_IRQ                0x00000400
#define IORESOURCE_DMA                0x00000800

#define IORESOURCE_PREFETCH        0x00001000        /* No side effects */
#define IORESOURCE_READONLY        0x00002000
#define IORESOURCE_CACHEABLE        0x00004000
#define IORESOURCE_RANGELENGTH        0x00008000
#define IORESOURCE_SHADOWABLE        0x00010000
#define IORESOURCE_BUS_HAS_VGA        0x00080000

#define IORESOURCE_UNSET        0x20000000
#define IORESOURCE_AUTO                0x40000000
#define IORESOURCE_BUSY                0x80000000
        /* Driver has marked this resource busy */


  指针parent、sibling和child的设置是为了以一种树的形式来管理各种I/O资源。

3.2 Linux对I/O资源的管理

  Linux是以一种倒置的树形结构来管理每一类I/O资源(如:I/O端口、外设内存、DMA和IRQ)的。每一类I/O资源都对应有一颗倒置的资源树,树中的每一个节点都是一个resource结构,而树的根结点root则描述了该类资源的整个资源空间。

  基于上述这个思想,Linux在kernel/Resource.c文件中实现了对资源的申请、释放及查找等操作。

  3.2.1 I/O资源的申请

  假设某类资源有如下这样一颗资源树:

  节点root、r1、r2和r3实际上都是一个resource结构类型。子资源r1、r2和r3通过sibling指针链接成一条单向非循环链表,其表头由root节点中的child指针定义,因此也称为父资源的子资源链表。r1、r2和r3的parent指针均指向他们的父资源节点,在这里也就是图中的root节点。

  假设想在root节点中分配一段I/O资源(由图中的阴影区域表示)。函数request_resource()实现这一功能。它有两个参数:①root指针,表示要在哪个资源根节点中进行分配;②new指针,指向描述所要分配的资源(即图中的阴影区域)的resource结构。该函数的源代码如下(kernel/resource.c):


  int request_resource(struct resource *root, struct resource *new)
  {
        struct resource *conflict;

        write_lock(&resource_lock);
        conflict = __request_resource(root, new);
        write_unlock(&resource_lock);
        return conflict ? -EBUSY : 0;
  }


  对上述函数的NOTE如下:

  ①资源锁resource_lock对所有资源树进行读写保护,任何代码段在访问某一颗资源树之前都必须先持有该锁。其定义如下(kernel/Resource.c):

  static rwlock_t resource_lock = RW_LOCK_UNLOCKED;

  ②可以看出,函数实际上是通过调用内部静态函数__request_resource()来完成实际的资源分配工作。如果该函数返回非空指针,则表示有资源冲突;否则,返回NULL就表示分配成功。

  ③最后,如果conflict指针为NULL,则request_resource()函数返回返回值0,表示成功;否则返回-EBUSY表示想要分配的资源已被占用。

  函数__request_resource()完成实际的资源分配工作。如果参数new所描述的资源中的一部分或全部已经被其它节点所占用,则函数返回与new相冲突的resource结构的指针。否则就返回NULL。该函数的源代码如下


(kernel/Resource.c):
/* Return the conflict entry if you can't request it */
static struct resource * __request_resource
  (struct resource *root, struct resource *new)
{
        unsigned long start = new->;start;
        unsigned long end = new->;end;
        struct resource *tmp, **p;

        if (end < start)
                return root;
        if (start < root->;start)
                return root;
        if (end >; root->;end)
                return root;
        p = &root->;child;
        for (; {
                tmp = *p;
                if (!tmp || tmp->;start >; end) {
                        new->;sibling = tmp;
                        *p = new;
                        new->;parent = root;
                        return NULL;
                }
                p = &tmp->;sibling;
                if (tmp->;end < start)
                        continue;
                return tmp;
        }
}


  对函数的NOTE:

  ①前三个if语句判断new所描述的资源范围是否被包含在root内,以及是否是一段有效的资源(因为end必须大于start)。否则就返回root指针,表示与根结点相冲突。

  ②接下来用一个for循环遍历根节点root的child链表,以便检查是否有资源冲突,并将new插入到child链表中的合适位置(child链表是以I/O资源物理地址从低到高的顺序排列的)。为此,它用tmp指针指向当前正被扫描的resource结构,用指针p指向前一个resource结构的sibling指针成员变量,p的初始值为指向root->;sibling。For循环体的执行步骤如下:

  l 让tmp指向当前正被扫描的resource结构(tmp=*p)。

  l 判断tmp指针是否为空(tmp指针为空说明已经遍历完整个child链表),或者当前被扫描节点的起始位置start是否比new的结束位置end还要大。只要这两个条件之一成立的话,就说明没有资源冲突,于是就可以把new链入child链表中:①设置new的sibling指针指向当前正被扫描的节点tmp(new->;sibling=tmp);②当前节点tmp的前一个兄弟节点的sibling指针被修改为指向new这个节点(*p=new);③将new的parent指针设置为指向root。然后函数就可以返回了(返回值NULL表示没有资源冲突)。

  l 如果上述两个条件都不成立,这说明当前被扫描节点的资源域有可能与new相冲突(实际上就是两个闭区间有交集),因此需要进一步判断。为此它首先修改指针p,让它指向tmp->;sibling,以便于继续扫描child链表。然后,判断tmp->;end是否小于new->;start,如果小于,则说明当前节点tmp和new没有资源冲突,因此执行continue语句,继续向下扫描child链表。否则,如果tmp->;end大于或等于new->;start,则说明tmp->;[start,end]和new->;[start,end]之间有交集。所以返回当前节点的指针tmp,表示发生资源冲突。

  3.2.2 资源的释放

  函数release_resource()用于实现I/O资源的释放。该函数只有一个参数——即指针old,它指向所要释放的资源。起源代码如下:


int release_resource(struct resource *old)
{
        int retval;

        write_lock(&resource_lock);
        retval = __release_resource(old);
        write_unlock(&resource_lock);
        return retval;
}


  可以看出,它实际上通过调用__release_resource()这个内部静态函数来完成实际的资源释放工作。函数__release_resource()的主要任务就是将资源区域old(如果已经存在的话)从其父资源的child链表重摘除,它的源代码如下:


static int __release_resource(struct resource *old)
{
        struct resource *tmp, **p;

        p = &old->;parent->;child;
        for (; {
                tmp = *p;
                if (!tmp)
                        break;
                if (tmp == old) {
                        *p = tmp->;sibling;
                        old->;parent = NULL;
                        return 0;
                }
                p = &tmp->;sibling;
        }
        return -EINVAL;
}


  对上述函数代码的NOTE如下:

  同函数__request_resource()相类似,该函数也是通过一个for循环来遍历父资源的child链表。为此,它让tmp指针指向当前被扫描的资源,而指针p则指向当前节点的前一个节点的sibling成员(p的初始值为指向父资源的child指针)。循环体的步骤如下:

  ①首先,让tmp指针指向当前被扫描的节点(tmp=*p)。

  ②如果tmp指针为空,说明已经遍历完整个child链表,因此执行break语句推出for循环。由于在遍历过程中没有在child链表中找到参数old所指定的资源节点,因此最后返回错误值-EINVAL,表示参数old是一个无效的值。

  ③接下来,判断当前被扫描节点是否就是参数old所指定的资源节点。如果是,那就将old从child链表中去除,也即让当前结点tmp的前一个兄弟节点的sibling指针指向tmp的下一个节点,然后将old->;parent指针设置为NULL。最后返回0值表示执行成功。

  ④如果当前被扫描节点不是资源old,那就继续扫描child链表中的下一个元素。因此将指针p指向tmp->;sibling成员。

  3.2.3 检查资源是否已被占用,

  函数check_resource()用于实现检查某一段I/O资源是否已被占用。其源代码如下:


int check_resource(struct resource *root, unsigned long start, unsigned long len)
{
        struct resource *conflict, tmp;

        tmp.start = start;
        tmp.end = start + len - 1;
        write_lock(&resource_lock);
        conflict = __request_resource(root, &tmp);
        if (!conflict)
                __release_resource(&tmp);
        write_unlock(&resource_lock);
        return conflict ? -EBUSY : 0;
}


  对该函数的NOTE如下:

  ①构造一个临时资源tmp,表示所要检查的资源[start,start+end-1]。

  ②调用__request_resource()函数在根节点root申请tmp所表示的资源。如果tmp所描述的资源还被人使用,则该函数返回NULL,否则返回非空指针。因此接下来在conflict为NULL的情况下,调用__release_resource()将刚刚申请的资源释放掉。

  ③最后根据conflict是否为NULL,返回-EBUSY或0值。

  3.2.4 寻找可用资源

  函数find_resource()用于在一颗资源树中寻找未被使用的、且满足给定条件的(也即资源长度大小为size,且在[min,max]区间内)的资源。其函数源代码如下:


/*
* Find empty slot in the resource tree given range and alignment.
*/
static int find_resource(struct resource *root, struct resource *new,
                  unsigned long size,
                  unsigned long min, unsigned long max,
                  unsigned long align,
                  void (*alignf)(void *, struct resource *, unsigned long),
                  void *alignf_data)
{
        struct resource *this = root->;child;

        new->;start = root->;start;
        for(; {
                if (this)
                        new->;end = this->;start;
                else
                        new->;end = root->;end;
                if (new->;start < min)
                        new->;start = min;
                if (new->;end >; max)
                        new->;end = max;
                new->;start = (new->;start + align - 1) & ~(align - 1);
                if (alignf)
                        alignf(alignf_data, new, size);
                if (new->;start < new->;end && new->;end - new->;start + 1 >;= size)
                  {
                        new->;end = new->;start + size - 1;
                        return 0;
                }
                if (!this)
                        break;
                new->;start = this->;end + 1;
                this = this->;sibling;
        }
        return -EBUSY;
}


  对该函数的NOTE如下:

  同样,该函数也要遍历root的child链表,以寻找未被使用的资源空洞。为此,它让this指针表示当前正被扫描的子资源节点,其初始值等于root->;child,即指向child链表中的第一个节点,并让new->;start的初始值等于root->;start,然后用一个for循环开始扫描child链表,对于每一个被扫描的节点,循环体执行如下操作:

  ①首先,判断this指针是否为NULL。如果不为空,就让new->;end等于this->;start,也即让资源new表示当前资源节点this前面那一段未使用的资源区间。

  ②如果this指针为空,那就让new->;end等于root->;end。这有两层意思:第一种情况就是根结点的child指针为NULL(即根节点没有任何子资源)。因此此时先暂时将new->;end放到最大。第二种情况就是已经遍历完整个child链表,所以此时就让new表示最后一个子资源后面那一段未使用的资源区间。

  ③根据参数min和max修正new->;[start,end]的值,以使资源new被包含在[min,max]区域内。

  ④接下来进行对齐操作。

  ⑤然后,判断经过上述这些步骤所形成的资源区域new是否是一段有效的资源(end必须大于或等于start),而且资源区域的长度满足size参数的要求(end-start+1>;=size)。如果这两个条件均满足,则说明我们已经找到了一段满足条件的资源空洞。因此在对new->;end的值进行修正后,然后就可以返回了(返回值0表示成功)。

  ⑥如果上述两条件不能同时满足,则说明还没有找到,因此要继续扫描链表。在继续扫描之前,我们还是要判断一下this指针是否为空。如果为空,说明已经扫描完整个child链表,因此就可以推出for循环了。否则就将new->;start的值修改为this->;end+1,并让this指向下一个兄弟资源节点,从而继续扫描链表中的下一个子资源节点。

  3.2.5 分配接口allocate_resource()

  在find_resource()函数的基础上,函数allocate_resource()实现:在一颗资源树中分配一条指定大小的、且包含在指定区域[min,max]中的、未使用资源区域。其源代码如下:


/*
* Allocate empty slot in the resource tree given range and alignment.
*/
int allocate_resource(struct resource *root, struct resource *new,
                      unsigned long size,
                      unsigned long min, unsigned long max,
                      unsigned long align,
                      void (*alignf)(void *, struct resource *, unsigned long),
                      void *alignf_data)
{
    int err;

    write_lock(&resource_lock);
    err = find_resource(root, new, size, min, max, align, alignf, alignf_data);
    if (err >;= 0 && __request_resource(root, new))
        err = -EBUSY;
    write_unlock(&resource_lock);
    return err;
}


  3.2.6 获取资源的名称列表

  函数get_resource_list()用于获取根节点root的子资源名字列表。该函数主要用来支持/proc/文件系统(比如实现proc/ioports文件和/proc/iomem文件)。其源代码如下:


int get_resource_list(struct resource *root, char *buf, int size)
{
        char *fmt;
        int retval;

        fmt = "        %08lx-%08lx : %s
";
        if (root->;end < 0x10000)
                fmt = "        %04lx-%04lx : %s
";
        read_lock(&resource_lock);
        retval = do_resource_list(root->;child, fmt, 8, buf, buf + size) - buf;
        read_unlock(&resource_lock);
        return retval;
}


  可以看出,该函数主要通过调用内部静态函数do_resource_list()来实现其功能,其源代码如下:


/*
* This generates reports for /proc/ioports and /proc/iomem
*/
static char * do_resource_list(struct resource *entry, const char *fmt,
  int offset, char *buf, char *end)
{
        if (offset < 0)
                offset = 0;

        while (entry) {
                const char *name = entry->;name;
                unsigned long from, to;

                if ((int) (end-buf) < 80)
                        return buf;

                from = entry->;start;
                to = entry->;end;
                if (!name)
                        name = "";

                buf += sprintf(buf, fmt + offset, from, to, name);
                if (entry->;child)
                   buf = do_resource_list(entry->;child, fmt, offset-2, buf, end);
                entry = entry->;sibling;
        }

        return buf;
}


  函数do_resource_list()主要通过一个while{}循环以及递归嵌套调用来实现,较为简单,这里就不在详细解释了。

3.3 管理I/O Region资源

  Linux将基于I/O映射方式的I/O端口和基于内存映射方式的I/O端口资源统称为“I/O区域”(I/O Region)。I/O Region仍然是一种I/O资源,因此它仍然可以用resource结构类型来描述。下面我们就来看看Linux是如何管理I/O Region的。

  3.3.1 I/O Region的分配

  在函数__request_resource()的基础上,Linux实现了用于分配I/O区域的函数__request_region(),如下:


struct resource * __request_region(struct resource *parent,
  unsigned long start, unsigned long n, const char *name)
{
        struct resource *res = kmalloc(sizeof(*res), GFP_KERNEL);

        if (res) {
                memset(res, 0, sizeof(*res));
                res->;name = name;
                res->;start = start;
                res->;end = start + n - 1;
                res->;flags = IORESOURCE_BUSY;

                write_lock(&resource_lock);

                for (; {
                        struct resource *conflict;

                        conflict = __request_resource(parent, res);
                        if (!conflict)
                                break;
                        if (conflict != parent) {
                                parent = conflict;
                                if (!(conflict->;flags & IORESOURCE_BUSY))
                                        continue;
                        }

                        /* Uhhuh, that didn't work out.. */
                        kfree(res);
                        res = NULL;
                        break;
                }
                write_unlock(&resource_lock);
        }
        return res;
}


NOTE:

  ①首先,调用kmalloc()函数在SLAB分配器缓存中分配一个resource结构。

  ②然后,相应的根据参数值初始化所分配的resource结构。注意!flags成员被初始化为IORESOURCE_BUSY。

  ③接下来,用一个for循环开始进行资源分配,循环体的步骤如下:

  l 首先,调用__request_resource()函数进行资源分配。如果返回NULL,说明分配成功,因此就执行break语句推出for循环,返回所分配的resource结构的指针,函数成功地结束。

  l 如果__request_resource()函数分配不成功,则进一步判断所返回的冲突资源节点是否就是父资源节点parent。如果不是,则将分配行为下降一个层次,即试图在当前冲突的资源节点中进行分配(只有在冲突的资源节点没有设置IORESOURCE_BUSY的情况下才可以),于是让parent指针等于conflict,并在conflict->;flags&IORESOURCE_BUSY为0的情况下执行continue语句继续for循环。

  l 否则如果相冲突的资源节点就是父节点parent,或者相冲突资源节点设置了IORESOURCE_BUSY标志位,则宣告分配失败。于是调用kfree()函数释放所分配的resource结构,并将res指针置为NULL,最后用break语句推出for循环。

  ④最后,返回所分配的resource结构的指针。

  3.3.2 I/O Region的释放

  函数__release_region()实现在一个父资源节点parent中释放给定范围的I/O Region。实际上该函数的实现思想与__release_resource()相类似。其源代码如下:


void __release_region(struct resource *parent,
    unsigned long start, unsigned long n)
{
        struct resource **p;
        unsigned long end;

        p = &parent->;child;
        end = start + n - 1;

        for (; {
                struct resource *res = *p;

                if (!res)
                        break;
                if (res->;start <= start && res->;end >;= end) {
                        if (!(res->;flags & IORESOURCE_BUSY)) {
                                p = &res->;child;
                                continue;
                        }
                        if (res->;start != start'  'res->;end != end)
                                break;
                        *p = res->;sibling;
                        kfree(res);
                        return;
                }
                p = &res->;sibling;
        }
        printk("Trying to free nonexistent resource <%08lx-%08lx>;
", start, end);
}


  类似地,该函数也是通过一个for循环来遍历父资源parent的child链表。为此,它让指针res指向当前正被扫描的子资源节点,指针p指向前一个子资源节点的sibling成员变量,p的初始值为指向parent->;child。For循环体的步骤如下:

  ①让res指针指向当前被扫描的子资源节点(res=*p)。

  ②如果res指针为NULL,说明已经扫描完整个child链表,所以退出for循环。

  ③如果res指针不为NULL,则继续看看所指定的I/O区域范围是否完全包含在当前资源节点中,也即看看[start,start+n-1]是否包含在res->;[start,end]中。如果不属于,则让p指向当前资源节点的sibling成员,然后继续for循环。如果属于,则执行下列步骤:

  l 先看看当前资源节点是否设置了IORESOURCE_BUSY标志位。如果没有设置该标志位,则说明该资源节点下面可能还会有子节点,因此将扫描过程下降一个层次,于是修改p指针,使它指向res->;child,然后执行continue语句继续for循环。

  l 如果设置了IORESOURCE_BUSY标志位。则一定要确保当前资源节点就是所指定的I/O区域,然后将当前资源节点从其父资源的child链表中去除。这可以通过让前一个兄弟资源节点的sibling指针指向当前资源节点的下一个兄弟资源节点来实现(即让*p=res->;sibling),最后调用kfree()函数释放当前资源节点的resource结构。然后函数就可以成功返回了。

  3.3.3 检查指定的I/O Region是否已被占用

  函数__check_region()检查指定的I/O Region是否已被占用。其源代码如下:


int __check_region(struct resource *parent, unsigned long start, unsigned long n)
{
        struct resource * res;

        res = __request_region(parent, start, n, "check-region";
        if (!res)
                return -EBUSY;

        release_resource(res);
        kfree(res);
        return 0;
}


  该函数的实现与__check_resource()的实现思想类似。首先,它通过调用__request_region()函数试图在父资源parent中分配指定的I/O Region。如果分配不成功,将返回NULL,因此此时函数返回错误值-EBUSY表示所指定的I/O Region已被占用。如果res指针不为空则说明所指定的I/O Region没有被占用。于是调用__release_resource()函数将刚刚分配的资源释放掉(实际上是将res结构从parent的child链表去除),然后调用kfree()函数释放res结构所占用的内存。最后,返回0值表示指定的I/O Region没有被占用。

3.4 管理I/O端口资源

  我们都知道,采用I/O映射方式的X86处理器为外设实现了一个单独的地址空间,也即“I/O空间”(I/O Space)或称为“I/O端口空间”,其大小是64KB(0x0000-0xffff)。Linux在其所支持的所有平台上都实现了“I/O端口空间”这一概念。

  由于I/O空间非常小,因此即使外设总线有一个单独的I/O端口空间,却也不是所有的外设都将其I/O端口(指寄存器)映射到“I/O端口空间”中。比如,大多数PCI卡都通过内存映射方式来将其I/O端口或外设内存映射到CPU的RAM物理地址空间中。而老式的ISA卡通常将其I/O端口映射到I/O端口空间中。

  Linux是基于“I/O Region”这一概念来实现对I/O端口资源(I/O-mapped 或 Memory-mapped)的管理的。

  3.4.1 资源根节点的定义

  Linux在kernel/Resource.c文件中定义了全局变量ioport_resource和iomem_resource,来分别描述基于I/O映射方式的整个I/O端口空间和基于内存映射方式的I/O内存资源空间(包括I/O端口和外设内存)。其定义如下:


struct resource ioport_resource =
    { "CI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };
struct resource iomem_resource =
    { "CI mem", 0x00000000, 0xffffffff, IORESOURCE_MEM };


  其中,宏IO_SPACE_LIMIT表示整个I/O空间的大小,对于X86平台而言,它是0xffff(定义在include/asm-i386/io.h头文件中)。显然,I/O内存空间的大小是4GB。

  3.4.2 对I/O端口空间的操作

  基于I/O Region的操作函数__XXX_region(),Linux在头文件include/linux/ioport.h中定义了三个对I/O端口空间进行操作的宏:①request_region()宏,请求在I/O端口空间中分配指定范围的I/O端口资源。②check_region()宏,检查I/O端口空间中的指定I/O端口资源是否已被占用。③release_region()宏,释放I/O端口空间中的指定I/O端口资源。这三个宏的定义如下:


#define request_region(start,n,name)
        __request_region(&ioport_resource, (start), (n), (name))
#define check_region(start,n)
        __check_region(&ioport_resource, (start), (n))
#define release_region(start,n)
        __release_region(&ioport_resource, (start), (n))


  其中,宏参数start指定I/O端口资源的起始物理地址(是I/O端口空间中的物理地址),宏参数n指定I/O端口资源的大小。

  3.4.3 对I/O内存资源的操作

  基于I/O Region的操作函数__XXX_region(),Linux在头文件include/linux/ioport.h中定义了三个对I/O内存资源进行操作的宏:①request_mem_region()宏,请求分配指定的I/O内存资源。②check_ mem_region()宏,检查指定的I/O内存资源是否已被占用。③release_ mem_region()宏,释放指定的I/O内存资源。这三个宏的定义如下:


#define request_mem_region(start,n,name)
  __request_region(&iomem_resource, (start), (n), (name))
#define check_mem_region(start,n)
        __check_region(&iomem_resource, (start), (n))
#define release_mem_region(start,n)
        __release_region(&iomem_resource, (start), (n))


  其中,参数start是I/O内存资源的起始物理地址(是CPU的RAM物理地址空间中的物理地址),参数n指定I/O内存资源的大小。

  3.4.4 对/proc/ioports和/proc/iomem的支持

  Linux在ioport.h头文件中定义了两个宏:

  get_ioport_list()和get_iomem_list(),分别用来实现/proc/ioports文件和/proc/iomem文件。其定义如下:


#define get_ioport_list(buf) get_resource_list(&ioport_resource, buf, PAGE_SIZE)
#define get_mem_list(buf)        get_resource_list(&iomem_resource, buf, PAGE_SIZE)


3.5 访问I/O端口空间

  在驱动程序请求了I/O端口空间中的端口资源后,它就可以通过CPU的IO指定来读写这些I/O端口了。在读写I/O端口时要注意的一点就是,大多数平台都区分8位、16位和32位的端口,也即要注意I/O端口的宽度。

  Linux在include/asm/io.h头文件(对于i386平台就是include/asm-i386/io.h)中定义了一系列读写不同宽度I/O端口的宏函数。如下所示:

  ⑴读写8位宽的I/O端口


  unsigned char inb(unsigned port);
  void outb(unsigned char value,unsigned port);


  其中,port参数指定I/O端口空间中的端口地址。在大多数平台上(如x86)它都是unsigned short类型的,其它的一些平台上则是unsigned int类型的。显然,端口地址的类型是由I/O端口空间的大小来决定的。

  ⑵读写16位宽的I/O端口


  unsigned short inw(unsigned port);
  void outw(unsigned short value,unsigned port);


  ⑶读写32位宽的I/O端口


  unsigned int inl(unsigned port);
  void outl(unsigned int value,unsigned port);


  3.5.1 对I/O端口的字符串操作

  除了上述这些“单发”(single-shot)的I/O操作外,某些CPU也支持对某个I/O端口进行连续的读写操作,也即对单个I/O端口读或写一系列字节、字或32位整数,这就是所谓的“字符串I/O指令”(String Instruction)。这种指令在速度上显然要比用循环来实现同样的功能要快得多。

  Linux同样在io.h文件中定义了字符串I/O读写函数:

  ⑴8位宽的字符串I/O操作


  void insb(unsigned port,void * addr,unsigned long count);
  void outsb(unsigned port ,void * addr,unsigned long count);


  ⑵16位宽的字符串I/O操作


  void insw(unsigned port,void * addr,unsigned long count);
  void outsw(unsigned port ,void * addr,unsigned long count);


  ⑶32位宽的字符串I/O操作


  void insl(unsigned port,void * addr,unsigned long count);
  void outsl(unsigned port ,void * addr,unsigned long count);


  3.5.2 Pausing I/O


  在一些平台上(典型地如X86),对于老式总线(如ISA)上的慢速外设来说,如果CPU读写其I/O端口的速度太快,那就可能会发生丢失数据的现象。对于这个问题的解决方法就是在两次连续的I/O操作之间插入一段微小的时延,以便等待慢速外设。这就是所谓的“Pausing I/O”。

  对于Pausing I/O,Linux也在io.h头文件中定义了它的I/O读写函数,而且都以XXX_p命名,比如:inb_p()、outb_p()等等。下面我们就以out_p()为例进行分析。

  将io.h中的宏定义__OUT(b,”b”char)展开后可得如下定义:


extern inline void outb(unsigned char value, unsigned short port) {
        __asm__ __volatile__ ("outb %" "b " "0,%" "w" "1"
                                : : "a" (value), "Nd" (port));
}

extern inline void outb_p(unsigned char value, unsigned short port) {
        __asm__ __volatile__ ("outb %" "b " "0,%" "w" "1"
                                __FULL_SLOW_DOWN_IO
                                : : "a" (value), "Nd" (port));
}


  可以看出,outb_p()函数的实现中被插入了宏__FULL_SLOWN_DOWN_IO,以实现微小的延时。宏__FULL_SLOWN_DOWN_IO在头文件io.h中一开始就被定义:


#ifdef SLOW_IO_BY_JUMPING
#define __SLOW_DOWN_IO "
jmp 1f
1:        jmp 1f
1:"
#else
#define __SLOW_DOWN_IO "
outb %%al,$0x80"
#endif

#ifdef REALLY_SLOW_IO
#define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
  __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO
#else
#define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
#endif


  显然,__FULL_SLOW_DOWN_IO就是一个或四个__SLOW_DOWN_IO(根据是否定义了宏REALLY_SLOW_IO来决定),而宏__SLOW_DOWN_IO则被定义成毫无意义的跳转语句或写端口0x80的操作(根据是否定义了宏SLOW_IO_BY_JUMPING来决定)。

3.6 访问I/O内存资源

  尽管I/O端口空间曾一度在x86平台上被广泛使用,但是由于它非常小,因此大多数现代总线的设备都以内存映射方式(Memory-mapped)来映射它的I/O端口(指I/O寄存器)和外设内存。基于内存映射方式的I/O端口(指I/O寄存器)和外设内存可以通称为“I/O内存”资源(I/O Memory)。因为这两者在硬件实现上的差异对于软件来说是完全透明的,所以驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是“I/O内存”资源。

  从前几节的阐述我们知道,I/O内存资源是在CPU的单一内存物理地址空间内进行编址的,也即它和系统RAM同处在一个物理地址空间内。因此通过CPU的访内指令就可以访问I/O内存资源。

  一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,这可以通过系统固件(如BIOS)在启动时分配得到,或者通过设备的硬连线(hardwired)得到。比如,PCI卡的I/O内存资源的物理地址就是在系统启动时由PCI BIOS分配并写到PCI卡的配置空间中的BAR中的。而ISA卡的I/O内存资源的物理地址则是通过设备硬连线映射到640KB-1MB范围之内的。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,因为它们是在系统启动后才已知的(某种意义上讲是动态的),所以驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。

  3.6.1 映射I/O内存资源

  Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间(3GB-4GB)中,如下:


void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);
void iounmap(void * addr);


  函数用于取消ioremap()所做的映射,参数addr是指向核心虚地址的指针。这两个函数都是实现在mm/ioremap.c文件中。具体实现可参考《情景分析》一书。

  3.6.2 读写I/O内存资源

  在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。但是,由于在某些平台上,对I/O内存和系统内存有不同的访问处理,因此为了确保跨平台的兼容性,Linux实现了一系列读写I/O内存资源的函数,这些函数在不同的平台上有不同的实现。但在x86平台上,读写I/O内存与读写RAM无任何差别。如下所示(include/asm-i386/io.h):


#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))
#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))
#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))

#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))
#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))
#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))

#define memset_io(a,b,c)        memset(__io_virt(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))
#define memcpy_toio(a,b,c)        memcpy(__io_virt(a),(b),(c))

  上述定义中的宏__io_virt()仅仅检查虚地址addr是否是核心空间中的虚地址。该宏在内核2.4.0中的实现是临时性的。具体的实现函数在arch/i386/lib/Iodebug.c文件。

  显然,在x86平台上访问I/O内存资源与访问系统主存RAM是无差别的。但是为了保证驱动程序的跨平台的可移植性,我们应该使用上面的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。




[目录]

--------------------------------------------------------------------------------


from smth


[目录]

--------------------------------------------------------------------------------


基本结构

1.UNIX下设备驱动程序的基本结构
    在UNIX系统里,对用户程序而言,设备驱动程序隐藏了设备的具体细节,对各种不同设备提供了一致的接口,一般来说是把设备映射为一个特殊的设备文件,用户程序可以象对其它文件一样对此设备文件进行操作。UNIX对硬件设备支持两个标准接口:块特别设备文件和字符特别设备文件,通过块(字符)特别 设备文件存取的设备称为块(字符)设备或具有块(字符)设备接口。 块设备接口仅支持面向块的I/O操作,所有I/O操作都通过在内核地址空间中的I/O缓冲区进行,它可以支持几乎任意长度和任意位置上的I/O请求,即提供随机存取的功能。
    字符设备接口支持面向字符的I/O操作,它不经过系统的快速缓存,所以它们负责管理自己的缓冲区结构。字符设备接口只支持顺序存取的功能,一般不能进行任意长度的I/O请求,而是限制I/O请求的长度必须是设备要求的基本块长的倍数。显然,本程序所驱动的串行卡只能提供顺序存取的功能,属于是字符设备,因此后面的讨论在两种设备有所区别时都只涉及字符型设备接口。设备由一个主设备号和一个次设备号标识。主设备号唯一标识了设备类型,即设备驱动程序类型,它是块设备表或字符设备表中设备表项的索引。次设备号仅由设备驱动程序解释,一般用于识别在若干可能的硬件设备中,I/O请求所涉及到的那个设备。

设备驱动程序可以分为三个主要组成部分:

    (1) 自动配置和初始化子程序,负责检测所要驱动的硬件设备是否存在和是否能正常工作。如果该设备正常,则对这个设备及其相关的、设备驱动程序需要的软件状态进行初始化。这部分驱动程序仅在初始化的时候被调用一次。
    (2) 服务于I/O请求的子程序,又称为驱动程序的上半部分。调用这部分是由于系统调用的结果。这部分程序在执行的时候,系统仍认为是和进行调用的进程属于同一个进程,只是由用户态变成了核心态,具有进行此系统调用的用户程序的运行环境,因此可以在其中调用sleep()等与进程运行环境有关的函数。
    (3) 中断服务子程序,又称为驱动程序的下半部分。在UNIX系统中,并不是直接从中断向量表中调用设备驱动程序的中断服务子程序,而是由UNIX系统来接收硬件中断,再由系统调用中断服务子程序。中断可以产生在任何一个进程运行的时候,因此在中断服务程序被调用的时候,不能依赖于任何进程的状态,也就不能调用任何与进程运行环境有关的函数。因为设备驱动程序一般支持同一类型的若干设备,所以一般在系统调用中断服务子程序的时候,都带有一个或多个参数,以唯一标识请求服务的设备。

    在系统内部,I/O设备的存取通过一组固定的入口点来进行,这组入口点是由每个设备的设备驱动程序提供的。一般来说,字符型设备驱动程序能够提供如下几个入口点:
(1) open入口点。打开设备准备I/O操作。对字符特别设备文件进行打开操作,都会调用设备的open入口点。open子程序必须对将要进行的I/O操作做好必要的准备工作,如清除缓冲区等。如果设备是独占的,即同一时刻只能有一个程序访问此设备,则open子程序必须设置一些标志以表示设备处于忙状态。
(2) close入口点。关闭一个设备。当最后一次使用设备终结后,调用close子程序。独占设备必须标记设备可再次使用。
(3) read入口点。从设备上读数据。对于有缓冲区的I/O操作,一般是从缓冲区里读数据。对字符特别设备文件进行读操作将调用read子程序。
(4) write入口点。往设备上写数据。对于有缓冲区的I/O操作,一般是把数据写入缓冲区里。对字符特别设备文件进行写操作将调用write子程序。
(5) ioctl入口点。执行读、写之外的操作。
(6) select入口点。检查设备,看数据是否可读或设备是否可用于写数据。select系统调用在检查与设备特别文件相关的文件描述符时使用select入口点。如果设备驱动程序没有提供上述入口点中的某一个,系统会用缺省的子程序来代替。对于不同的系统,也还有一些其它的入口点。





[目录]

--------------------------------------------------------------------------------


驱动程序

2.LINUX系统下的设备驱动程序
    具体到LINUX系统里,设备驱动程序所提供的这组入口点由一个结构来向系统进行说明,此结构定义为:
#include <linux/fs.h>;
struct file_operations {
        int (*lseek)(struct inode *inode,struct file *filp,
                off_t off,int pos);
        int (*read)(struct inode *inode,struct file *filp,
                char *buf, int count);
        int (*write)(struct inode *inode,struct file *filp,
                char *buf,int count);
        int (*readdir)(struct inode *inode,struct file *filp,
                struct dirent *dirent,int count);
        int (*select)(struct inode *inode,struct file *filp,
                int sel_type,select_table *wait);
        int (*ioctl) (struct inode *inode,struct file *filp,
                unsigned int cmd,unsigned int arg);
        int (*mmap) (void);

        int (*open) (struct inode *inode, struct file *filp);
        void (*release) (struct inode *inode, struct file *filp);
        int (*fsync) (struct inode *inode, struct file *filp);
};

其中,struct inode提供了关于特别设备文件/dev/driver(假设此设备名为driver)的信息,它的定义为:

#include <linux/fs.h>;
struct inode {
        dev_t           i_dev;
        unsigned long    i_ino;  /* Inode number */
        umode_t        i_mode; /* Mode of the file */
        nlink_t          i_nlink;
        uid_t           i_uid;
        gid_t           i_gid;
        dev_t           i_rdev;  /* Device major and minor numbers*/
        off_t            i_size;
        time_t          i_atime;
        time_t          i_mtime;
        time_t          i_ctime;
        unsigned long   i_blksize;
        unsigned long   i_blocks;
        struct inode_operations * i_op;
      struct super_block * i_sb;
        struct wait_queue * i_wait;
        struct file_lock * i_flock;
        struct vm_area_struct * i_mmap;
        struct inode * i_next, * i_prev;
        struct inode * i_hash_next, * i_hash_prev;
        struct inode * i_bound_to, * i_bound_by;
        unsigned short i_count;
        unsigned short i_flags;  /* Mount flags (see fs.h) */
        unsigned char i_lock;
        unsigned char i_dirt;
        unsigned char i_pipe;
        unsigned char i_mount;
        unsigned char i_seek;
        unsigned char i_update;
        union {
                struct pipe_inode_info pipe_i;
                struct minix_inode_info minix_i;
                struct ext_inode_info ext_i;
                struct msdos_inode_info msdos_i;
                struct iso_inode_info isofs_i;
                struct nfs_inode_info nfs_i;
        } u;
};

struct file主要用于与文件系统对应的设备驱动程序使用。当然,其它设备驱动程序也可以使用它。它提供关于被打开的文件的信息,定义为:#include <linux/fs.h>;
struct file {
        mode_t f_mode;
        dev_t f_rdev;             /* needed for /dev/tty */
        off_t f_pos;              /* Curr. posn in file */
        unsigned short f_flags;   /* The flags arg passed to open */
        unsigned short f_count;   /* Number of opens on this file */
        unsigned short f_reada;
        struct inode *f_inode;    /* pointer to the inode struct */
        struct file_operations *f_op;/* pointer to the fops struct*/
};

    在结构file_operations里,指出了设备驱动程序所提供的入口点位置,分别是
(1) lseek,移动文件指针的位置,显然只能用于可以随机存取的设备。
(2) read,进行读操作,参数buf为存放读取结果的缓冲区,count为所要读取的数据长度。返回值为负表示读取操作发生错误,否则返回实际读取的字节数。对于字符型,要求读取的字节数和返回的实际读取字节数都必须是inode->;i_blksize的的倍数。
(3) write,进行写操作,与read类似。
(4) readdir,取得下一个目录入口点,只有与文件系统相关的设备驱动程序才使用。
(5) selec,进行选择操作,如果驱动程序没有提供select入口,select操作将会认为设备已经准备好进行任何的I/O操作。
(6) ioctl,进行读、写以外的其它操作,参数cmd为自定义的的命令。
(7) mmap,用于把设备的内容映射到地址空间,一般只有块设备驱动程序使用。
( open,打开设备准备进行I/O操作。返回0表示打开成功,返回负数表示失败。如果驱动程序没有提供open入口,则只要/dev/driver文件存在就认为打开成功。
(9) release,即close操作。
    设备驱动程序所提供的入口点,在设备驱动程序初始化的时候向系统进行登记,以便系统在适当的时候调用。LINUX系统里,通过调用register_chrdev向系统注册字符型设备驱动程序。register_chrdev定义为:

#include <linux/fs.h>;
#include <linux/errno.h>;
int register_chrdev(unsigned int major, const char *name, struct file_operations *fops);

    其中,major是为设备驱动程序向系统申请的主设备号,如果为0则系统为此驱动程序动态地分配一个主设备号。name是设备名。fops就是前面所说的对各个调用的入口点的说明。此函数返回0表示成功。返回-EINVAL表示申请的主设备号非法,一般来说是主设备号大于系统所允许的最大设备号。返回-EBUSY表示所申请的主设备号正在被其它设备驱动程序使用。如果是动态分配主设备号成功,此函数将返回所分配的主设备号。如果register_chrdev操作成功,设备名就会出现在/proc/devices文件里。
    初始化部分一般还负责给设备驱动程序申请系统资源,包括内存、中断、时钟、I/O端口等,这些资源也可以在open子程序或别的地方申请。在这些资源不用的时候,应该释放它们,以利于资源的共享。在UNIX系统里,对中断的处理是属于系统核心的部分,因此如果设备与系统之间以中断方式进行数据交换的话,就必须把该设备的驱动程序作为系统核心的一部分。设备驱动程序通过调用request_irq函数来申请中断,通过free_irq来释放中断。它们的定义为:

#include <linux/sched.h>;
int request_irq(unsigned int irq,
            void (*handler)(int irq,void dev_id,struct pt_regs *regs),
            unsigned long flags,
            const char *device,
            void *dev_id);
void free_irq(unsigned int irq, void *dev_id);

    参数irq表示所要申请的硬件中断号。handler为向系统登记的中断处理子程序,中断产生时由系统来调用,调用时所带参数irq为中断号,dev_id为申请时告诉系统的设备标识,regs为中断发生时寄存器内容。device为设备名,将会出现在/proc/interrupts文件里。flag是申请时的选项,它决定中断处理程序的一些特性,其中最重要的是中断处理程序是快速处理程序(flag里设置了SA_INTERRUPT)还是慢速处理程序(不设置SA_INTERRUPT),快速处理程序运行时,所有中断都被屏蔽,而慢速处理程序运行时,除了正在处理的中断外,其它中断都没有被屏蔽。

    在LINUX系统中,中断可以被不同的中断处理程序共享,这要求每一个共享此中断的处理程序在申请中断时在flags里设置SA_SHIRQ,这些处理程序之间以dev_id来区分。如果中断由某个处理程序独占,则dev_id可以为NULL。request_irq返回0表示成功,返回-INVAL表示irq>;15或handler==NULL,返回-EBUSY表示中断已经被占用且不能共享。作为系统核心的一部分,设备驱动程序在申请和释放内存时不是调用malloc和free,而代之以调用kmalloc和kfree,它们被定义为:

#include <linux/kernel.h>;
void * kmalloc(unsigned int len, int priority);
void kfree(void * obj);

    参数len为希望申请的字节数,obj为要释放的内存指针。priority为分配内存操作的优先级,即在没有足够空闲内存时如何操作,一般用GFP_KERNEL。与中断和内存不同,使用一个没有申请的I/O端口不会使CPU产生异常,也就不会导致诸如“segmentation fault"一类的错误发生。任何进程都可以访问任何一个I/O端口。此时系统无法保证对I/O端口的操作不会发生冲突,甚至会因此而使系统崩溃。因此,在使用I/O端口前,也应该检查此I/O端口是否已有别的程序在使用,若没有,再把此端口标记为正在使用,在使用完以后释放它。这样需要用到如下几个函数:

int check_region(unsigned int from, unsigned int extent);
void request_region(unsigned int from, unsigned int extent, const char *name);
void release_region(unsigned int from, unsigned int extent);

    调用这些函数时的参数为:from表示所申请的I/O端口的起始地址;extent为所要申请的从from开始的端口数;name为设备名,将会出现在/proc/ioports文件里。check_region返回0表示I/O端口空闲,否则为正在被使用。
在申请了I/O端口之后,就可以如下几个函数来访问I/O端口:

#include <asm/io.h>;
inline unsigned int inb(unsigned short port);
inline unsigned int inb_p(unsigned short port);
inline void outb(char value, unsigned short port);
inline void outb_p(char value, unsigned short port);

    其中inb_p和outb_p插入了一定的延时以适应某些慢的I/O端口。在设备驱动程序里,一般都需要用到计时机制。在LINUX系统中,时钟是由系统接管,设备驱动程序可以向系统申请时钟。与时钟有关的系统调用有:

#include <asm/param.h>;
#include <linux/timer.h>;
void add_timer(struct timer_list * timer);
int  del_timer(struct timer_list * timer);
inline void init_timer(struct timer_list * timer);

struct timer_list的定义为:

struct timer_list {
               struct timer_list *next;
               struct timer_list *prev;
               unsigned long expires;
               unsigned long data;
               void (*function)(unsigned long d);
       };

    其中expires是要执行function的时间。系统核心有一个全局变量JIFFIES表示当前时间,一般在调用add_timer时jiffies=JIFFIES+num,表示在num个系统最小时间间隔后执行function。系统最小时间间隔与所用的硬件平台有关,在核心里定义了常数HZ表示一秒内最小时间间隔的数目,则num*HZ表示num秒。系统计时到预定时间就调用function,并把此子程序从定时队列里删除,因此如果想要每隔一定时间间隔执行一次的话,就必须在function里再一次调用add_timer。function的参数d即为timer里面的data项。在设备驱动程序里,还可能会用到如下的一些系统函数:

#include <asm/system.h>;
#define cli() __asm__ __volatile__ ("cli":
#define sti() __asm__ __volatile__ ("sti":

这两个函数负责打开和关闭中断允许。

#include <asm/segment.h>;
void memcpy_fromfs(void * to,const void * from,unsigned long n);
void memcpy_tofs(void * to,const void * from,unsigned long n);

    在用户程序调用read 、write时,因为进程的运行状态由用户态变为核心态,地址空间也变为核心地址空间。而read、write中参数buf是指向用户程序的私有地址空间的,所以不能直接访问,必须通过上述两个系统函数来访问用户程序的私有地址空间。memcpy_fromfs由用户程序地址空间往核心地址空间复制,memcpy_tofs则反之。参数to为复制的目的指针,from为源指针,n为要复制的字节数。在设备驱动程序里,可以调用printk来打印一些调试信息,用法与printf类似。printk打印的信息不仅出现在屏幕上,同时还记录在文件syslog里。





[目录]

--------------------------------------------------------------------------------


具体实现

3.LINUX系统下的具体实现
    在LINUX里,除了直接修改系统核心的源代码,把设备驱动程序加进核心里以外,还可以把设备驱动程序作为可加载的模块,由系统管理员动态地加载它,使之成为核心地一部分。也可以由系统管理员把已加载地模块动态地卸载下来。
    LINUX中,模块可以用C语言编写,用gcc编译成目标文件(不进行链接,作为*.o文件存在),为此需要在gcc命令行里加上-c的参数。在编译时,还应该在gcc的命令行里加上这样的参数:-D__KERNEL__ -DMODULE。由于在不链接时,gcc只允许一个输入文件,因此一个模块的所有部分都必须在一个文件里实现。编译好的模块*.o放在/lib/modules/xxxx/misc下(xxxx表示核心版本,如在核心版本为2.0.30时应该为/lib/modules/2.0.30/misc),然后用depmod -a使此模块成为可加载模块。模块用insmod命令加载,用rmmod命令来卸载,并可以用lsmod命令来查看所有已加载的模块的状态。

    编写模块程序的时候,必须提供两个函数,一个是int init_module(void),供insmod在加载此模块的时候自动调用,负责进行设备驱动程序的初始化工作。init_module返回0以表示初始化成功,返回负数表示失败。另一个函数是voidcleanup_module (void),在模块被卸载时调用,负责进行设备驱动程序的清除工作。

    在成功的向系统注册了设备驱动程序后(调用register_chrdev成功后),就可以用mknod命令来把设备映射为一个特别文件,其它程序使用这个设备的时候,只要对此特别文件进行操作就行了。



[目录]

--------------------------------------------------------------------------------


PCI

    PCI是一种广泛采用的总线标准,它提供了优于其他总线标准(比如EISA)的特性。在大多数奔腾主板上,PCI是高速、高带宽(32-bit和64-bit)、处理器无关的总线。对PCI的支持第一次加入Linux中时,其内核接口是PCI BIOS32函数的堆砌。这样做有几个问题:
* PCI BIOS仅存在于PC上;
* PCI BIOS只代表特定的结构,非PC类机器的某些PCI设置不能用PCI BIOS来描述;
* 个别机子的PCI BIOS函数不象预期的那样工作。

    Linux 2.2提供了一个通用的PCI接口。Linux x86内核实际上努力直接驱动硬件,只有当它发现某些东西不能理解时,它才会调用PCI BIOS32函数。
驱动程序可以继续使用老的PCI接口,但是为了兼容将来的内核,可能需要更新。
    如果驱动程序将要跨平台工作,那就更加需要更新了。多数新、老函数有简单的对应关系。PCI BIOS基于总线号/设备号/功能号的思想,而新的代码使用pci_bus和pci_dev结构。第一个新PCI函数是:

pci_present()

    这个函数检查机器是否存在一条或更多的PCI总线。老内核有一个pcibios_present()函数,它们的用法完全相同。

    确认PCI存在之后,你可以扫描PCI总线来查找设备。PCI设备通过几个配置寄存器来标识,主要是供应商ID和设备ID。每个供应商被分配了一个唯一的标识(ID),并且假设供应商给他们的设备(板子、芯片等)分配唯一的设备ID。PCI的一个好处是它提供了版本和编程接口信息,因此可以发现板子的变化。

    在Linux 2.2中,扫描PCI总线一般用pci_find_device()函数。范例如下:

struct pci_dev *pdev = NULL;
while ((pdev = pci_find_device(PCI_MY_VENDOR,
PCI_MY_DEVICE, pdev)) != NULL)
{
/* Found a device */
setup_device(pdev);
}

    pci_find_device()有3个参数:第一个是供应商ID,第二个是设备ID,第三个是函数的返回值,NULL表示你想从头开始查找。在这个例子中,对找到的设备调用setup_device()来进行设置。

    另一个值得高兴的事情,是PCI为你处理了所有资源配置工作。一般来说PCI BIOS具体做这些工作,但是在其他平台上,这项工作由固件或者体系结构相关的Linux代码来做。到你的驱动程序查找PCI卡的时候,它已经被分配了系统资源。

    Linux在pci_dev结构中提供了PCI相关的核心信息。同时还允许读写每个卡的PCI配置空间。当你可以直接查找资源数据时应该小心,对许多系统来说,卡上配置的数据与内核提供的数据并不相符。因为许多非PC机器有多条PCI总线,PCI总线以设备卡不知道的方式映射到系统中。

    Linux直接提供了IRQ和PCI BARs(基址寄存器)。为了避免代码在非PC平台上出现意外,你应该总是使用内核提供的数据。下面代码列出了setup_device()例程:

Listing One: The setup_device () Function
void setup_device(struct pci_dev *dev)
{
int io_addr = dev->;base_address[0] & PCI_BASE_ADDRESS_IO_MASK;
int irq = dev->;irq;
u8 rev;

pci_read_config_byte(dev, PCI_REVISION_ID, &rev);

if (rev<64)
printk("Found a WonderWidget 500 at I/O 0x%04X, IRQ %d.\n",
io_addr, irq);
else
printk("Found a WonderWidget 600 at I/O 0x%04X, IRQ %d.\n",
io_addr, irq);

/* Check for a common BIOS problem - if you
* expect an IRQ you might not get it */
if (irq==0)
{
printk(KERN_ERR "BIOS has not assigned the WonderWidget"
" an interrupt.\n";
return;
}

/* Now do the board initialization knowing the resources */
init_device(io_addr, irq, rev<64 ? 0 : 1);

pci_set_master(dev);
}

    当你的卡被BIOS配置后,某些特性可能会被屏蔽掉。比如,多数BIOS都会清掉“master”位,这导致板卡不能随意向主存中拷贝数据。Linux 2.2提供了一个辅助函数:

pci_set_master(struct pci_dev *)

    这个函数会检查是否需要设置标志位,如果需要,则会将“master”位置位。例子函数setup_device还使用了pci_read_config_byte来读取配置空间数据。内核提供了一整套与配置空间相关的函数:

pci_read_config_byte,
pci_read_config_word,
和pci_read_config_dword

分别从配置空间获取8,16和32位数据;

pci_write_config_byte,
pci_write_config_word,
和pci_write_config_dword

分别向配置空间写入8,16和32位数据。PCI配置空间独立于I/O和内存空间,只能通过这些函数访问。

    最后一组有用的PCI函数以不同的方式扫描PCI总线。pci_find_class查找符合给定类别(class)的设备。PCI规范把设备分为不同的类别,你可以根据类别查找设备。例如,为了查找一个USB控制器,可以用

struct pci_dev *pdev = NULL;
while((pdev=pci_find_class
(PCI_CLASS_SERIAL_USB <<8, pdev))!=NULL)
{
u8 type;
pci_read_config_byte(dev,
PCI_CLASS_PROG, &type);
if(type!=0)
continue;
/* FOUND IT */
}

    另一个例子是I2O。这时,供应商ID只用来确定板卡的实际类型(type),偶尔用来对付特定板卡的bug。

    扫描PCI设备的最后一种途径是pci_find_slot,使你按照特定的顺序扫描PCI插槽和功能。它很少使用,但是,如果你要控制查找某一类型设备时扫描PCI总线的顺序,你可以用它。这种情况通常出现在你需要遵照主板BIOS报告设备的顺序时,或者你想使Linux和非Linux驱动程序以相同的顺序报告设备时。传递给pci_find_slot()的是总线号slot和设备-功能号function(slot<<3 | function)。

PCI中断和其他注意事项

    PCI总线一个重要的概念是共享中断处理,这在ISA总线设备中一般是看不到的。PCI总线中断也是电平触发的(level-triggered),也就是说,中断一直在那里,直到设备去清除它。这些特性给驱动程序处理中断加上了一些重要的限制。

    驱动程序注册PCI中断时,总是应该带上SA_SHIRQ标志,用来指明中断线是可以共享的。如果不这样做,那么系统中的其他设备有可能不能正常工作,用户也可能遇到麻烦。

    由于中断是共享的,PCI设备驱动程序和内核都需要与每个中断处理例程进行沟通的方法。你必须用一个非空(non-NULL)的dev_id来注册共享中断,否则,当你需要用free_irq来释放一个中断时,内核不能区分不同的中断处理例程。dev_id被送到中断处理例程,因此它非常重要。例如,你可以这样:

if (request_irq(dev->;irq, dev_interrupt,
SA_SHIRQ, "wonderwidget",
dev))
return -EAGAIN;

结束时,用下面的语句来正确释放中断:

free_irq(dev->;irq, dev)

中断处理例程被调用时收到dev参数,这使事情很简单了。你不必搜寻使用该中断的设备,通常可以这样做:

Listing Two: Using the dev_id
static void dev_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct wonderwidget *dev = dev_id;
u32 status;

/* It is important to exit interrupt handlers
* that are not for us as fast as possible */

if((status=inl(dev->;port))==0) /* Not our interrupt */
return;

if(status&1)
handle_rx_intr(dev);
....
}

    你必须总是小心处理中断。永远不要在安装中断处理例程之前产生中断。因为PCI中断是电平触发的,如果你产生了中断而又不能处理它,可能会导致死机。这意味着写初始化代码时必须特别小心,你必须在打开设备的中断之前注册中断处理例程。同样,关闭时必须在注销中断处理例程之前屏蔽设备的中断。与ISA总线相比,Linux对PCI总线的支持用到较多的函数,并且要小心处理中断。
    作为回报,不需要你的介入,系统把一切都配置好了。



[目录]

--------------------------------------------------------------------------------


loopback

各位大侠,最近我看Linux源码中的网络驱动部分。
先从loopback.c入手的。
loopback.c中的loopback_xmit函数中有这么一段:
static int loopback_xmit(struct sk_buff * skb,struct net_device * dev)
{
        struct net_device_stats * stats = (struct net_device_stats *)dev_priv;
        if (atomic_read(&skb->;users)!=1){

/*判断有几个人用skb. 是会有多出用skb,例如一边运行一边sniff.有些时候会修改skb, 这就要clone,如果这/个skb也被其他人用了.. */

                struct sk_buff * skb2 = skb;
                skb=skb_clone(skb,GFP_ATOMIC);
                if(skb==NULL){
                        kfree_skb(skb2);
                        return 0;/*这里系统内存不足,为什么不报错?因为对kernel来说,mem 不够不是错,是会出现的实际情况,. 在这里的处理方式就是把这个包drop调.不loopback了. */
                }
                kfree_skb(skb2);
        }
        else
                skb_orphan(skb);/*查<linux/skbuff.h>;中定义:
                                skb_orphan ---- orphan a buffer
                                @skb: buffer to orphan
                                If a buffer currently has an owner then we
                                call the owner's destructor function and
                                make the @skb unowned.The buffer continues
                                to exist but is no longer charged to its
                                former owner
                                那么skb_orphan以后,原来skb所指向的sk_buff
                                结构如何使用呢?skb是否成了一个空指针?
                                skb_orphan和kfree_skb有什么本质的区别?
                                其实这里应该不是free调的.还是可以用的.但是取消
                                原来的owner的引用而已. */
        .
        .
        .
}




[目录]

--------------------------------------------------------------------------------


Sis 900

SIS 900 是一个可以用来实作 10/100 网络卡的控制芯片。它提供了对 PCI mastermode , MII, 802.3x 流量控制等各种标准的支援。这篇文章将告诉大家,如何写一个 Linux 的网络驱动程序,它将比大家想像中简单很多。这篇文章将以 Linux 2.4 版为对象, 2.2 版提供的界面略有不同,但差别并不太大,读完本文后再读 2.2 版的程序码应该不会有太大困难才是。 本文所参考的驱动程序是在 2.4.3 版中 drivers/net/sis900.c 这个档案。你可以在 http://xxx.xxx.xxx.xxx/linux-2.4.3/drivers/net/sis900.c 找到它。如果你能有一份硬件的 databook 在手边,读起驱动程序的码可能会更简单。 SIS900的 databook 可以直接在http://www.sis.com.tw/ftp/Databook/900/sis900.exe下载。
PCI 驱动程序
对一个 PCI 驱动程序而言, Linux 提供了很完整的支援,大部份的 PCI 资讯都由内建的程序读出。对个别的驱动程序而言直接使用就可以了。所以在这个部份,唯一要做的事只是告知 PCI 子系统一个新的驱动程序己经被加入系统之中了。在档案的最末端,你会看到下面的程序,

static struct pci_driver sis900_pci_driver = {
        name:           SIS900_MODULE_NAME,
        id_table:       sis900_pci_tbl,
        probe:          sis900_probe,
        remove:         sis900_remove,
};
static int __init sis900_init_module(void)
{
        printk(KERN_INFO "%s", version);
        return pci_module_init(&sis900_pci_driver);
}
static void __exit sis900_cleanup_module(void)
{
        pci_unregister_driver(&sis900_pci_driver);
}

pci_module_init 是用来向 PCI 子系统注册一个 PCI 驱动程序。根据 id_table 中所提供的资料, PCI 子系统会在发现符合驱动程序要求的装置时使用它。那 PCI 子系统如何做到这件事呢 ? 我们先看一下 id_table 的内容就很清楚了。

static struct pci_device_id sis900_pci_tbl [] __devinitdata = {
        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
        {0,}
};
MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);

看懂了吗 ? 嗯,我想你懂了。不过我还是解释一下。前面四个分别是

vendor id : PCI_VENDOR_ID_SI
device id : PCI_DEVICE_ID_SI_900
sub vendor id : PCI_ANY_ID
sub device id : PCI_ANY_ID

意思是说这个驱动程序支援 SIS 出的 SIS900 系列所有的硬件,我们不介意 subvendor id 和 sub device id 。你可以加入任何你想要的项目。对于不同的网络卡制造商,它们可能会有不同的 sub vendor id 和 sub device id 。但只要它们用SIS900 这个芯片,那这个驱动程序就可能适用。我们可以说这是一个『公版』的驱动程序。初始化好了,那其它的部份呢 ? 还记意 sis900_pci_driver 中其它的二个项目 probe 和remove 吗 ? 它们是用来初始化和移除一个驱动程序的呼叫。你可以把它们想成驱动程序物件的 constructor 和 destructor 。在 probe 中,你应该由硬件中把一些将来可能会用到的资讯准备好。由于这是一个 PCI 驱动程序,你不必特意去检查装置是否真的存在。但如果你的驱动程序只支援某些特定的硬件,或是你想要检查系统中是否有一些特别的硬件存在,你可以在这里做。例如在这个驱动程序中,对不同版本的硬件,我们用不
同的方法去读它的 MAC 位址。
         pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &revision);
        if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV)
                ret = sis630e_get_mac_addr(pci_dev, net_dev);
        else if (revision == SIS630S_900_REV)
                ret = sis630e_get_mac_addr(pci_dev, net_dev);
        else
                ret = sis900_get_mac_addr(pci_dev, net_dev);
对于 SIS630E SIS630EA1 和 SIS630S 这些整合式芯片而言,其 MAC 位址被储存在 APC CMOS RAM 之中。但对其它独立的芯片而言则是存在网络卡的 EEPROM 之上。为了不要让这篇文章像流水帐一般,我不仔细的说明 probe 的过程。大家自己揣摸一下吧 !

在 probe 中还有一段比较和后文有关的程序码
         net_dev->;open = &sis900_open;
        net_dev->;hard_start_xmit = &sis900_start_xmit;
        net_dev->;stop = &sis900_close;
        net_dev->;get_stats = &sis900_get_stats;
        net_dev->;set_config = &sis900_set_config;
        net_dev->;set_multicast_list = &set_rx_mode;
        net_dev->;do_ioctl = &mii_ioctl;
        net_dev->;tx_timeout = sis900_tx_timeout;
        net_dev->;watchdog_timeo = TX_TIMEOUT;
我想这很清楚,我们透过 net_dev 这个结构告诉 Linux 网络子系统如何来操作这个装置。当你使用 ifconfig 这个 R 令时,系统会使用 sis900_open 打开这个驱动程序,并使用 set_config 来说定装置的参数,如 IP address 。当有资料需要被传送时, sis900_start_xmit 被用来将资料送入装置之中。接下来,我们就一一的检视这些函数。

初始化装置
sis900_open(struct net_device *net_dev);

这个函数会在我们使用 ifconfig 将一网络装置激活时被呼叫。当驱动程序被插入系统之后,通常并不会马上开始接收或传送封包。一般来说,在 probe 的阶段,我们只是单纯的判断装置是否存在。实际激活硬件的动作在这里才会被实际执行。以 SIS900 为例,在其硬件中只有一个大约 2K 的缓冲区。也就是说在装置上只有一个
封包的缓冲区。当一个封包被传送后,装置必须产生一个中断要求操作系统将下一个封包传入。如果由中断到中断驱动程序被执行需要 5ms 的时间,那一秒至多我们可以送出 200 个封包。也就是说网络传送是不可能大于 400K/s ,这对于一般的情况下是不太可能接受的事。SIS900 虽然在装置上只有很小的缓冲区,但它可以透过 PCI master 模式直接控制主机板上的记忆体。事实上,它使用下面的方式来传送资料。你必须在记忆体中分配一组串接成环状串列的缓冲区,然后将 TXDP 指向缓冲区的第一个位址。 SIS900 会在第一个缓冲区传送完后自动的由第二个缓冲区取资料,并更新记忆中的资料将己传送完缓冲区的 OWN 位元清除。当 CPU 将缓冲区串列设定完成后,这个动作可以在完全没有 CPU 的介入下完成。所以硬件不必等待作业系统将新的资料送入,而可以连续的送出多个封包。操作系统只要能来的及让环状串列不会进入空的状态就可以了。

同样的,我们也需要一个接收缓冲区,使用进来的封包不至因操作系统来不及处理而遗失。在 sis900_open 中, sis900_init_rx_ring 和 sis900_init_tx_ring 就是用来负处初始化这二个串列。
在初始化串列之后,我们便可以要求 SIS900 开始接收封包。下面二行程序码便是用来做这件事。

  outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
  outl(RxENA, ioaddr + cr);
  outl(IE, ioaddr + ier);

第一行设定硬件在下列情况发出一个系统中断,
接收失败时
接收成功 时
传送失败时
所有缓冲区中的资料都传送完时
第二行则告诉硬件操作系统己经准备好要接收资料了。第三行则时硬件实际开始送出中断。
在这个函数的最后,我们安装一个每秒执行五次的 timer 。在它的处理函数 sis900_timer 中,我们会检查目前的连结状态,这包括了连结的种类 (10/100)和连接的状态 ( 网络卡是否直的被接到网络上去 ) 。
如果各位用过 Window 2000 ,另人印象最深刻的是当你将网络线拔出时, GUI 会自动警言网络己经中断。其实 Linux 也可以做到这件事,只是你需要一个比较好的图形界面就是了。
传送一个封包的 descriptor 给网络卡

sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);

这个函数是用来将一个由 skb 描述的网络资料缓冲区送进传送缓冲区中准备传送。其中最重要的程序码为

    sis_priv->;tx_ring[entry].bufptr = virt_to_bus(skb->;data);
    sis_priv->;tx_ring[entry].cmdsts = (OWN | skb->;len);
    outl(TxENA, ioaddr + cr);

SIS900 会使用 DMA 由缓冲区中取得封包的资料。由于缓冲区的数目有限,我们必须在缓冲区用完的时后告诉上层的网络协定不要再往下送资料了。在这里我们用下面的程序来做这件事。

     if (++sis_priv->;cur_tx - sis_priv->;dirty_tx < NUM_TX_DESC) {
        netif_start_queue(net_dev);
    } else {
        sis_priv->;tx_full = 1;
        netif_stop_queue(net_dev);
    }

netif_start_queue 用来告诉上层网络协定这个驱动程序还有空的缓冲区可用,请把下一个封包送进来。 netif_stop_queue 则是用来告诉上层网络协定所有的封包都用完了,请不要再送。

接收一个或多个封包
int sis900_rx(struct net_device *net_dev);

这个函式在会在有封包进入系统时被呼叫,因为可能有多于一个的封包在缓冲区之中。这个函数会逐一检查所有的缓冲区,直到遇到一个空的缓冲区为止。当我们发现一个有资料的缓冲区时,我们需要做二件事。首先是告知上层网络协定有一个新的封包进入系统,这件事由下面的程序完成

               skb = sis_priv->;rx_skbuff[entry];
               skb_put(skb, rx_size);
               skb->;protocol = eth_type_trans(skb, net_dev);
               netif_rx(skb);
前三行根据封包的内容更新 skbuff 中的档头。最后一行则是正式通知上层处理封包。

请注意 Linux 为了增加处理效能,在 netif_rx 并不会真的做完整接收封包的动作,而只是将这个封包记下来。真实的动作是在 bottom half 中才去处理。因为如此,原先储存封包的缓冲区暂时不能再被使用,我们必须重新分配一个新的缓冲区供下一个封包使用。下面的程序码是用来取得一个新的缓冲区。

      if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
          sis_priv->;rx_skbuff[entry] = NULL;
          sis_priv->;rx_ring[entry].cmdsts = 0;
          sis_priv->;rx_ring[entry].bufptr = 0;
          sis_priv->;stats.rx_dropped++;
          break;
     }
     skb->;dev = net_dev;
     sis_priv->;rx_skbuff[entry] = skb;
     sis_priv->;rx_ring[entry].cmdsts = RX_BUF_SIZE;
     sis_priv->;rx_ring[entry].bufptr = virt_to_bus(skb->;tail);
     sis_priv->;dirty_rx++;

这个函数其馀的部份其实只是用来记录一些统计资料而己。
传送下一个封包

void sis900_finish_xmit (struct net_device *net_dev);

这个函数用来处理传送中断。在收到一个 TX 中断,表示有一个或多数缓冲区中的资料己经传送完成。我们可以把原先的缓冲区释出来供其它的封包使用,并且用下面的程序告诉上层协定可以送新的封包下来了。

     if (sis_priv->;tx_full && netif_queue_stopped(net_dev) &&
        sis_priv->;cur_tx - sis_priv->;dirty_tx < NUM_TX_DESC - 4) {
        sis_priv->;tx_full = 0;
        netif_wake_queue (net_dev);
    }

netif_wake_queue() 会使得上层协定开始传送新的资料下来。

改变装置的设定

int sis900_set_config(struct net_device *dev, struct ifmap *map);

处理

论坛徽章:
0
发表于 2003-04-21 13:26 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

经验


[目录]

--------------------------------------------------------------------------------


新手入门

入门
    针对好多Linux 爱好者对内核很有兴趣却无从下口,本文旨在介绍一种解读linux内核源码的入门方法,而不是解说linux复杂的内核机制;

一.核心源程序的文件组织:

    1.Linux核心源程序通常都安装在/usr/src/linux下,而且它有一个非常简单的编号约定:任何偶数的核心(例如2.0.30)都是一个稳定地发行的核心,而任何奇数的核心(例如2.1.42)都是一个开发中的核心。

    本文基于稳定的2.2.5源代码,第二部分的实现平台为 Redhat Linux 6.0。

    2.核心源程序的文件按树形结构进行组织,在源程序树的最上层你会看到这样一些目录:

    ●Arch :arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。PC机一般都基于此目录;

    ●Include: include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在 include/linux子目录下,与 intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录;

    ●Init: 这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的一个非常好的起点。

    ●Mm :这个目录包括所有独立于 cpu 体系结构的内存管理代码,如页式存储管理内存的分配和释放等;而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c

    ●Kernel:主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/*/kernel中;

    ●Drivers: 放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录:如,/block 下为块设备驱动程序,比如ide(ide.c)。如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()。它不仅初始化硬盘,也初始化网络,因为安装nfs文件系统的时候需要网络其他: 如, Lib放置核心的库代码; Net,核心与网络相关的代码; Ipc,这个目录包含核心的进程间通讯的代码; Fs ,所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统,例如fat和ext2;

    ●Scripts, 此目录包含用于配置核心的脚本文件等。

    一般,在每个目录下,都有一个 .depend 文件和一个 Makefile 文件,这两个文件都是编译时使用的辅助文件,仔细阅读这两个文件对弄清各个文件这间的联系和依托关系很有帮助;而且,在有的目录下还有Readme 文件,它是对该目录下的文件的一些说明,同样有利于我们对内核源码的理解;

二.解读实战:为你的内核增加一个系统调用

    虽然,Linux 的内核源码用树形结构组织得非常合理、科学,把功能相关联的文件都放在同一个子目录下,这样使得程序更具可读性。然而,Linux 的内核源码实在是太大而且非常复杂,即便采用了很合理的文件组织方法,在不同目录下的文件之间还是有很多的关联,分析核心的一部分代码通常会要查看其它的几个相关的文件,而且可能这些文件还不在同一个子目录下。

    体系的庞大复杂和文件之间关联的错综复杂,可能就是很多人对其望而生畏的主要原因。当然,这种令人生畏的劳动所带来的回报也是非常令人着迷的:你不仅可以从中学到很多的计算机的底层的知识(如下面将讲到的系统的引导),体会到整个操作系统体系结构的精妙和在解决某个具体细节问题时,算法的巧妙;而且更重要的是:在源码的分析过程中,你就会被一点一点地、潜移默化地专业化;甚至,只要分析十分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。

    为了使读者能更好的体会到这一特点,下面举了一个具体的内核分析实例,希望能通过这个实例,使读者对 Linux的内核的组织有些具体的认识,从中读者也可以学到一些对内核的分析方法。

以下即为分析实例:

【一】操作平台:

硬件:cpu intel Pentium II ;

软件:Redhat Linux 6.0; 内核版本2.2.5【二】相关内核源代码分析:

    1.系统的引导和初始化:Linux 系统的引导有好几种方式:常见的有 Lilo, Loadin引导和Linux的自举引导

    (bootsect-loader),而后者所对应源程序为arch/i386/boot/bootsect.S,它为实模式的汇编程序,限于篇幅在此不做分析;无论是哪种引导方式,最后都要跳转到 arch/i386/Kernel/setup.S, setup.S主要是进行时模式下的初始化,为系统进入保护模式做准备;此后,系统执行 arch/i386/kernel/head.S (对经压缩后存放的内核要先执行 arch/i386/boot/compressed/head.S); head.S 中定义的一段汇编程序setup_idt ,它负责建立一张256项的 idt 表(Interrupt Descriptor Table),此表保存着所有自陷和中断的入口地址;其中包括系统调用总控程序 system_call 的入口地址;当然,除此之外,head.S还要做一些其他的初始化工作;

    2.系统初始化后运行的第一个内核程序asmlinkage void __init start_kernel(void) 定义在/usr/src/linux/init/main.c中,它通过调用usr/src/linux/arch/i386/kernel/traps.c 中的一个函数

    void __init trap_init(void) 把各自陷和中断服务程序的入口地址设置到 idt 表中,其中系统调用总控程序system_cal就是中断服务程序之一;void __init trap_init(void) 函数则通过调用一个宏

    set_system_gate(SYSCALL_VECTOR,&system_call); 把系统调用总控程序的入口挂在中断0x80上;

    其中SYSCALL_VECTOR是定义在 /usr/src/linux/arch/i386/kernel/irq.h中的一个常量0x80; 而 system_call 即为中断总控程序的入口地址;中断总控程序用汇编语言定义在/usr/src/linux/arch/i386/kernel/entry.S中;

    3.中断总控程序主要负责保存处理机执行系统调用前的状态,检验当前调用是否合法, 并根据系统调用向量,使处理机跳转到保存在 sys_call_table 表中的相应系统服务例程的入口; 从系统服务例程返回后恢复处理机状态退回用户程序;

    而系统调用向量则定义在/usr/src/linux/include/asm-386/unistd.h 中;sys_call_table 表定义在/usr/src/linux/arch/i386/kernel/entry.S 中; 同时在 /usr/src/linux/include/asm-386/unistd.h 中也定义了系统调用的用户编程接口;

    4.由此可见 , linux 的系统调用也象 dos 系统的 int 21h 中断服务, 它把0x80 中断作为总的入口, 然后转到保存在 sys_call_table 表中的各种中断服务例程的入口地址 , 形成各种不同的中断服务;

    由以上源代码分析可知, 要增加一个系统调用就必须在 sys_call_table 表中增加一项 , 并在其中保存好自己的系统服务例程的入口地址,然后重新编译内核,当然,系统服务例程是必不可少的。

    由此可知在此版linux内核源程序中,与系统调用相关的源程序文件就包括以下这些:

1.arch/i386/boot/bootsect.S
2.arch/i386/Kernel/setup.S
3.arch/i386/boot/compressed/head.S
4.arch/i386/kernel/head.S
5.init/main.c
6.arch/i386/kernel/traps.c
7.arch/i386/kernel/entry.S
8.arch/i386/kernel/irq.h
9.include/asm-386/unistd.h

    当然,这只是涉及到的几个主要文件。而事实上,增加系统调用真正要修改文件只有include/asm-386/unistd.h和arch/i386/kernel/entry.S两个;

【三】 对内核源码的修改:

    1.在kernel/sys.c中增加系统服务例程如下:

asmlinkage int sys_addtotal(int numdata)
{
int i=0,enddata=0;
while(i<=numdata)
enddata+=i++;
return enddata;
}

    该函数有一个 int 型入口参数 numdata , 并返回从 0 到 numdata 的累加值; 当然也可以把系统服务例程放在一个自己定义的文件或其他文件中,只是要在相应文件中作必要的说明;

    2.把 asmlinkage int sys_addtotal( int) 的入口地址加到sys_call_table表中:

    arch/i386/kernel/entry.S 中的最后几行源代码修改前为:

... ...

.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
.rept NR_syscalls-190
.long SYMBOL_NAME(sys_ni_syscall)
.endr

    修改后为:

... ...
.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
/* add by I */
.long SYMBOL_NAME(sys_addtotal)
.rept NR_syscalls-191
.long SYMBOL_NAME(sys_ni_syscall)
.endr

    3. 把增加的 sys_call_table 表项所对应的向量,在include/asm-386/unistd.h 中进行必要申明,以供用户进程和其他系统进程查询或调用:

    增加后的部分 /usr/src/linux/include/asm-386/unistd.h 文件如下:

... ...

#define __NR_sendfile 187
#define __NR_getpmsg 188
#define __NR_putpmsg 189
#define __NR_vfork 190

/* add by I */

#define __NR_addtotal 191

4.测试程序(test.c)如下:

#include
#include
_syscall1(int,addtotal,int, num)

main()
{
int i,j;
  do
printf("lease input a number\n";
while(scanf("%d",&i)==EOF);
if((j=addtotal(i))==-1)
printf("Error occurred in syscall-addtotal();\n";
printf("Total from 0 to %d is %d \n",i,j);
}

    对修改后的新的内核进行编译,并引导它作为新的操作系统,运行几个程序后可以发现一切正常;在新的系统下对测试程序进行编译(*注:由于原内核并未提供此系统调用,所以只有在编译后的新内核下,此测试程序才能可能被编译通过),运行情况如下:

$gcc -o test test.c
$./test
Please input a number

36
Total from 0 to 36 is 666

    可见,修改成功;

    而且,对相关源码的进一步分析可知,在此版本的内核中,从/usr/src/linux/arch/i386/kernel/entry.S

    文件中对 sys_call_table 表的设置可以看出,有好几个系统调用的服务例程都是定义在/usr/src/linux/kernel/sys.c 中的同一个函数:

asmlinkage int sys_ni_syscall(void)
{
return -ENOSYS;
}

    例如第188项和第189项就是如此:

... ...

.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */

... ...

    而这两项在文件 /usr/src/linux/include/asm-386/unistd.h 中却申明如下:

... ...
#define __NR_sendfile 187
#define __NR_getpmsg 188 /* some people actually want streams */
#define __NR_putpmsg 189 /* some people actually want streams */
#define __NR_vfork 190

    由此可见,在此版本的内核源代码中,由于asmlinkage int sys_ni_syscall(void) 函数并不进行任何操作,所以包括 getpmsg, putpmsg 在内的好几个系统调用都是不进行任何操作的,即有待扩充的空调用; 但它们却仍然占用着sys_call_table表项,估计这是设计者们为了方便扩充系统调用而安排的; 所以只需增加相应服务例程(如增加服务例程getmsg或putpmsg),就可以达到增加系统调用的作用。

[目录]

--------------------------------------------------------------------------------


一个简单程序的分析----深至内核

                A small trail through the Linux kernel
Andries Brouwer, aeb@cwi.nl 2001-01-01

A program
---------------------------------------------------------------------------------------------------
#include <unistd.h>;
#include <fcntl.h>;
int main(){
        int fd;
        char buf[512];

        fd = open("/dev/hda", O_RDONLY);
        if (fd >;= 0)
                read(fd, buf, sizeof(buf));
        return 0;
}
---------------------------------------------------------------------------------------------------

This little program opens the block special device referring to the first IDE disk, and if the open succeeded reads the first sector. What happens in the kernel? Let us read 2.4.0 source.


[目录]

--------------------------------------------------------------------------------


open

The open system call is found in fs/open.c:
---------------------------------------------------------------------------------------------------
int sys_open(const char *filename, int flags, int mode) {
        char *tmp = getname(filename);
        int fd = get_unused_fd();
        struct file *f = filp_open(tmp, flags, mode);
        fd_install(fd, f);
        putname(tmp);
        return fd;
}
---------------------------------------------------------------------------------------------------

The routine getname() is found in fs/namei.c. It copies the file name from user space to kernel space:

---------------------------------------------------------------------------------------------------
#define __getname()     kmem_cache_alloc(names_cachep, SLAB_KERNEL)
#define putname(name)   kmem_cache_free(names_cachep, (void *)(name))

char *getname(const char *filename) {
        char *tmp = __getname();        /* allocate some memory */
        strncpy_from_user(tmp, filename, PATH_MAX + 1);
        return tmp;
}
---------------------------------------------------------------------------------------------------

The routine get_unused_fd() is found in fs/open.c again. It returns the first unused filedescriptor:

---------------------------------------------------------------------------------------------------
int get_unused_fd(void) {
        struct files_struct *files = current->;files;
        int fd = find_next_zero_bit(files->;open_fds,
                                    files->;max_fdset, files->;next_fd);
        FD_SET(fd, files->;open_fds);    /* in use now */
        files->;next_fd = fd + 1;
        return fd;
}
---------------------------------------------------------------------------------------------------

Here current is the pointer to the user task struct for the currently executing task.

The routine fd_install() is found in include/linux/file.h. It just stores the information returned by filp_open()

---------------------------------------------------------------------------------------------------
void fd_install(unsigned int fd, struct file *file) {
        struct files_struct *files = current->;files;
        files->;fd[fd] = file;
}
---------------------------------------------------------------------------------------------------

So all the interesting work of sys_open() is done in filp_open(). This routine is found in fs/open.c:

---------------------------------------------------------------------------------------------------
struct file *filp_open(const char *filename, int flags, int mode) {
        struct nameidata nd;
        open_namei(filename, flags, mode, &nd);
        return dentry_open(nd.dentry, nd.mnt, flags);
}
---------------------------------------------------------------------------------------------------

The struct nameidata is defined in include/linux/fs.h. It is used during lookups.

---------------------------------------------------------------------------------------------------
struct nameidata {
        struct dentry *dentry;
        struct vfsmount *mnt;
        struct qstr last;
};
---------------------------------------------------------------------------------------------------

The routine open_namei() is found in fs/namei.c:

---------------------------------------------------------------------------------------------------
open_namei(const char *pathname, int flag, int mode, struct nameidata *nd) {
        if (!(flag & O_CREAT)) {
                /* The simplest case - just a plain lookup. */
                if (*pathname == '/') {
                        nd->;mnt = mntget(current->;fs->;rootmnt);
                        nd->;dentry = dget(current->;fs->;root);
                } else {
                        nd->;mnt = mntget(current->;fs->;pwdmnt);
                        nd->;dentry = dget(current->;fs->;pwd);
                }
                path_walk(pathname, nd);
                /* Check permissions etc. */
                ...
                return 0;
        }
        ...
}
---------------------------------------------------------------------------------------------------

An inode (index node) describes a file. A file can have several names (or no name at all), but it has a unique inode. A dentry (directory entry)describes a name of a file: the inode plus the pathname used to find it. Avfsmount describes the filesystem we are in.

So, essentially, the lookup part op open_namei() is found in path_walk():

---------------------------------------------------------------------------------------------------
path_walk(const char *name, struct nameidata *nd) {
        struct dentry *dentry;
        for(; {
                struct qstr this;
                this.name = next_part_of(name);
                this.len = length_of(this.name);
                this.hash = hash_fn(this.name);
                /* if . or .. then special, otherwise: */
                dentry = cached_lookup(nd->;dentry, &this);
                if (!dentry)
                        dentry = real_lookup(nd->;dentry, &this);
                nd->;dentry = dentry;
                if (this_was_the_final_part)
                        return;
        }
}
---------------------------------------------------------------------------------------------------

Here the cached_lookup() tries to find the given dentry in a cache of recently used dentries. If it is not found, the real_lookup() goes to the filesystem, which probably goes to disk, and actually finds the thing.After path_walk() is done, the nd argument contains the required dentry,which in turn has the inode information on the file. Finally we do dentry_open() that initializes a file struct:

---------------------------------------------------------------------------------------------------
struct file *
dentry_open(struct dentry *dentry, struct vfsmount *mnt, int flags) {
        struct file *f = get_empty_filp();
        f->;f_dentry = dentry;
        f->;f_vfsmnt = mnt;
        f->;f_pos = 0;
        f->;f_op = dentry->;d_inode->;i_fop;
        ...
        return f;
}
---------------------------------------------------------------------------------------------------

So far the open. In short: walk the tree, for each component hope the information is in cache, and if not ask the file system. How does this work? Each file system type provides structs super_operations,file_operations, inode_operations, address_space_operations that contain the addresses of the routines that can do stuff. And thus

---------------------------------------------------------------------------------------------------
struct dentry *real_lookup(struct dentry *parent, struct qstr *name, int flags) {
        struct dentry *dentry = d_alloc(parent, name);
        parent->;d_inode->;i_op->;lookup(dir, dentry);
        return dentry;
}
---------------------------------------------------------------------------------------------------

calls on the lookup routine for the specific fiilesystem, as found in the struct inode_operations in the inode of the dentry for the directory in which we do the lookup.

And this file system specific routine must read the disk data and search the directory for the file we are looking for. Good examples of file systems are minix and romfs because they are simple and small. For example,in fs/romfs/inode.c:

---------------------------------------------------------------------------------------------------
romfs_lookup(struct inode *dir, struct dentry *dentry) {
        const char *name = dentry->;d_name.name;
        int len = dentry->;d_name.len;
        char fsname[ROMFS_MAXFN];
        struct romfs_inode ri;
        unsigned long offset = dir->;i_ino & ROMFH_MASK;
        for (; {
                romfs_copyfrom(dir, &ri, offset, ROMFH_SIZE);
                romfs_copyfrom(dir, fsname, offset+ROMFH_SIZE, len+1);
                if (strncmp (name, fsname, len) == 0)
                        break;
                /* next entry */
                offset = ntohl(ri.next) & ROMFH_MASK;
        }
        inode = iget(dir->;i_sb, offset);
        d_add (dentry, inode);
        return 0;
}

romfs_copyfrom(struct inode *i, void *dest,
               unsigned long offset, unsigned long count) {
        struct buffer_head *bh;

        bh = bread(i->;i_dev, offset>;>;ROMBSBITS, ROMBSIZE);
        memcpy(dest, ((char *)bh->;b_data) + (offset & ROMBMASK), count);
        brelse(bh);
}
(All complications, all locking, and all error handling deleted.)
---------------------------------------------------------------------------------------------------



[目录]

--------------------------------------------------------------------------------


read

Given a file descriptor (that keeps the inode and the file position of the file) we want to read. In fs/read_write.c we find:
---------------------------------------------------------------------------------------------------
ssize_t sys_read(unsigned int fd, char *buf, size_t count) {
        struct file *file = fget(fd);
        return file->;f_op->;read(file, buf, count, &file->;f_pos);
}
---------------------------------------------------------------------------------------------------

That is, the read system call asks the file system to do the reading,starting at the current file position. The f_op field was filled in the dentry_open() routine above with the i_fop field of an inode.

For romfs the struct file_operations is assigned in romfs_read_inode(). For a regular file (case 2) it assigns generic_ro_fops. For a block special file (case 4) it calls init_special_inode() (see devices.c) which assigns
def_blk_fops.

How come romfs_read_inode() was ever called? When the filesystem was mounted, the routine romfs_read_super() was called, and it assigned romfs_ops to the s_op field of the superblock struct.

---------------------------------------------------------------------------------------------------
struct super_operations romfs_ops = {
        read_inode:     romfs_read_inode,
        statfs:         romfs_statfs,
};
---------------------------------------------------------------------------------------------------

And the iget() that was skipped over in the discussion above (in romfs_lookup()) finds the inode with given number ino in a cache, and if it cannot be found there creates a new inode struct by calling get_new_inode()(see fs/inode.c):

---------------------------------------------------------------------------------------------------

struct inode * iget(struct super_block *sb, unsigned long ino) {
        struct list_head * head = inode_hashtable + hash(sb,ino);
        struct inode *inode = find_inode(sb, ino, head);
        if (inode) {
                wait_on_inode(inode);
                return inode;
        }
        return get_new_inode(sb, ino, head);
}

struct inode *
get_new_inode(struct super_block *sb, unsigned long ino,
              struct list_head *head) {
        struct inode *inode = alloc_inode();
        inode->;i_sb = sb;
        inode->;i_dev = sb->;s_dev;
        inode->;i_ino = ino;
        ...
        sb->;s_op->;read_inode(inode);
}
---------------------------------------------------------------------------------------------------

So that is how the inode was filled, and we find that in our case (/dev/hda is a block special file) the routine that is called by sys_read is def_blk_fops.read, and inspection of block_dev.c shows that that is the routine block_read():
---------------------------------------------------------------------------------------------------

ssize_t block_read(struct file *filp, char *buf, size_t count, loff_t *ppos) {
        struct inode *inode = filp->;f_dentry->;d_inode;
        kdev_t dev = inode->;i_rdev;
        ssize_t blocksize = blksize_size[MAJOR(dev)][MINOR(dev)];
        loff_t offset = *ppos;
        ssize_t read = 0;
        size_t left, block, blocks;
        struct buffer_head *bhreq[NBUF];
        struct buffer_head *buflist[NBUF];
        struct buffer_head **bh;

        left = count;                   /* bytes to read */
        block = offset / blocksize;     /* first block */
        offset &= (blocksize-1);    /* starting offset in block */
        blocks = (left + offset + blocksize - 1) / blocksize;

        bh = buflist;
        do {
                while (blocks) {
                        --blocks;
                        *bh = getblk(dev, block++, blocksize);
                        if (*bh && !buffer_uptodate(*bh))
                                bhreq[bhrequest++] = *bh;
                }
                if (bhrequest)
                        ll_rw_block(READ, bhrequest, bhreq);
                /* wait for I/O to complete,
                   copy result to user space,
                   increment read and *ppos, decrement left */
        } while (left >; 0);
        return read;
}
---------------------------------------------------------------------------------------------------

So the building blocks here are getblk(), ll_rw_block(), and wait_on_buffer().

The first of these lives in fs/buffer.c. It finds the buffer that already contains the required data if we are lucky, and otherwise a buffer that is going to be used.

---------------------------------------------------------------------------------------------------
struct buffer_head * getblk(kdev_t dev, int block, int size) {
        struct buffer_head *bh;
        int isize;

try_again:
        bh = __get_hash_table(dev, block, size);
        if (bh)
                return bh;
        isize = BUFSIZE_INDEX(size);
        bh = free_list[isize].list;
        if (bh) {
                __remove_from_free_list(bh);
                init_buffer(bh);
                bh->;b_dev = dev;
                bh->;b_blocknr = block;
                ...
                return bh;
        }
        refill_freelist(size);
        goto try_again;
}
---------------------------------------------------------------------------------------------------

The real I/O is started by ll_rw_block(). It lives in drivers/block/ll_rw_blk.c.

---------------------------------------------------------------------------------------------------
ll_rw_block(int rw, int nr, struct buffer_head * bhs[]) {
        int i;

        for (i = 0; i < nr; i++) {
                struct buffer_head *bh = bhs;

                bh->;b_end_io = end_buffer_io_sync;

                submit_bh(rw, bh);
        }
}
---------------------------------------------------------------------------------------------------

Here bh->;b_end_io specifies what to do when I/O is finished. In this case:

---------------------------------------------------------------------------------------------------
end_buffer_io_sync(struct buffer_head *bh, int uptodate) {
        mark_buffer_uptodate(bh, uptodate);
        unlock_buffer(bh);
}
---------------------------------------------------------------------------------------------------

So, ll_rw_block() just feeds the requests it gets one by one to submit_bh():

---------------------------------------------------------------------------------------------------
submit_bh(int rw, struct buffer_head *bh) {
        bh->;b_rdev = bh->;b_dev;
        bh->;b_rsector = bh->;b_blocknr * (bh->;b_size >;>; 9);

        generic_make_request(rw, bh);
}
---------------------------------------------------------------------------------------------------

So, submit_bh() just passes things along to generic_make_request(), the routine to send I/O requests to block devices:

---------------------------------------------------------------------------------------------------
generic_make_request (int rw, struct buffer_head *bh) {
        request_queue_t *q;

        q = blk_get_queue(bh->;b_rdev);
        q->;make_request_fn(q, rw, bh);
}
---------------------------------------------------------------------------------------------------

Thus, it finds the right queue and calls the request function for that queue.

---------------------------------------------------------------------------------------------------
struct blk_dev_struct {
        request_queue_t         request_queue;
        queue_proc              *queue;
        void                    *data;
} blk_dev[MAX_BLKDEV];

request_queue_t *blk_get_queue(kdev_t dev)
{
        return blk_dev[MAJOR(dev)].queue(dev);
}
---------------------------------------------------------------------------------------------------

In our case (/dev/hda), the blk_dev struct was filled by hwif_init (from drivers/ide/ide-probe.c):
and this ide_get_queue() is found in drivers/ide/ide.c:

---------------------------------------------------------------------------------------------------
blk_dev[hwif->;major].data = hwif;
        blk_dev[hwif->;major].queue = ide_get_queue;

#define DEVICE_NR(dev)       (MINOR(dev) >;>; PARTN_BITS)

request_queue_t *ide_get_queue (kdev_t dev) {
        ide_hwif_t *hwif = (ide_hwif_t *) blk_dev[MAJOR(dev)].data;
        return &hwif->;drives[DEVICE_NR(dev) & 1].queue;
}
---------------------------------------------------------------------------------------------------

This .queue field was filled by ide_init_queue():
And blk_init_queue() (from ll_rw_blk.c again):

---------------------------------------------------------------------------------------------------
ide_init_queue(ide_drive_t *drive) {
        request_queue_t *q = &drive->;queue;

        q->;queuedata = HWGROUP(drive);
        blk_init_queue(q, do_ide_request);
}

blk_init_queue(request_queue_t *q, request_fn_proc *rfn) {
        ...
        q->;request_fn           = rfn;
        q->;make_request_fn      = __make_request;
        q->;merge_requests_fn    = ll_merge_requests_fn;
        ...
}
---------------------------------------------------------------------------------------------------

Aha, so we found the q->;make_request_fn. Here it is:

---------------------------------------------------------------------------------------------------
       __make_request(request_queue_t *q, int rw, struct buffer_head *bh) {
               /* try to merge request with adjacent ones */
               ...
               /* get a struct request and fill it with device, start,length, ... */
               ...
               add_request(q, req, insert_here);
               if (!q->;plugged)
                       q->;request_fn(q);
       }

       add_request(request_queue_t *q, struct request *req,
                   struct list_head *insert_here) {
               list_add(&req->;queue, insert_here);
       }

---------------------------------------------------------------------------------------------------

When the request has been queued, q->;request_fn is called. What is that? We can see it above - it is do_ide_request() and lives in ide.c.

---------------------------------------------------------------------------------------------------

       do_ide_request(request_queue_t *q) {
               ide_do_request(q->;queuedata, 0);
       }

       ide_do_request(ide_hwgroup_t *hwgroup, int masked_irq) {
               ide_startstop_t startstop;

               while (!hwgroup->;busy) {
                       hwgroup->;busy = 1;
                       drive = choose_drive(hwgroup);
                       startstop = start_request(drive);
                       if (startstop == ide_stopped)
                               hwgroup->;busy = 0;
               }
       }

       ide_startstop_t
       start_request (ide_drive_t *drive) {
               unsigned long block, blockend;
               struct request *rq;

               rq = blkdev_entry_next_request(&drive->;queue.queue_head);
               block = rq->;sector;
               block += drive->;part[minor & PARTN_MASK].start_sect;
               SELECT_DRIVE(hwif, drive);
               return (DRIVER(drive)->;do_request(drive, rq, block));
       }
---------------------------------------------------------------------------------------------------

So, in the case of a partitioned disk it is only at this very low level that we add in the starting sector of the partition in order to get an absolute sector.
The first actual port access happened already:

---------------------------------------------------------------------------------------------------
       #define SELECT_DRIVE(hwif,drive) \
               OUT_BYTE((drive)->;select.all,
hwif->;io_ports[IDE_SELECT_OFFSET]);
---------------------------------------------------------------------------------------------------

but this do_request function must do the rest. For a disk it is defined in ide-disk.c, in the ide_driver_t idedisk_driver, and the function turns out to be do_rw_disk().

---------------------------------------------------------------------------------------------------
       ide_startstop_t
       do_rw_disk (ide_drive_t *drive, struct request *rq, unsigned long
block) {
               if (IDE_CONTROL_REG)
                       OUT_BYTE(drive->;ctl,IDE_CONTROL_REG);
               OUT_BYTE(rq->;nr_sectors,IDE_NSECTOR_REG);
               if (drive->;select.b.lba) {
                       OUT_BYTE(block,IDE_SECTOR_REG);
                       OUT_BYTE(block>;>;=8,IDE_LCYL_REG);
                       OUT_BYTE(block>;>;=8,IDE_HCYL_REG);

OUT_BYTE(((block>;>;&0x0f)|drive->;select.all,IDE_SELECT_REG);
               } else {
                       unsigned int sect,head,cyl,track;
                       track = block / drive->;sect;
                       sect  = block % drive->;sect + 1;
                       OUT_BYTE(sect,IDE_SECTOR_REG);
                       head  = track % drive->;head;
                       cyl   = track / drive->;head;
                       OUT_BYTE(cyl,IDE_LCYL_REG);
                       OUT_BYTE(cyl>;>;8,IDE_HCYL_REG);
                       OUT_BYTE(head|drive->;select.all,IDE_SELECT_REG);
               }
               if (rq->;cmd == READ) {
                       ide_set_handler(drive, &read_intr, WAIT_CMD, NULL);
                       OUT_BYTE(WIN_READ, IDE_COMMAND_REG);
                       return ide_started;
               }
               ...
       }
---------------------------------------------------------------------------------------------------

This fills the remaining control registers of the interface and starts the actual I/O. Now ide_set_handler() sets up read_intr() to be called when we get an interrupt. This calls ide_end_request() when a request is done, which calls
end_that_request_first() (which calls bh->;b_end_io() as promised earlier) and end_that_request_last() which calls
blkdev_release_request() which wakes up whoever waited for the block.




[目录]

--------------------------------------------------------------------------------


lisolog文章检索


[目录]

--------------------------------------------------------------------------------


index


索引的内容:
我比较喜欢的帖子. 和精华收藏多有冲突.


索引的使用:
支持分类, 从这里找帖子, 然后分类,要比在论坛里搜索方便. 有这一点作用, 也不枉我遍历一次论坛.( 折叠起来看,不然太乱了)



索引的更新:
我们记录了索引更新的时间. 下一次更新时, 比方说一个月后, 只需选择显示一个月内发表的文章. 这样就不会丢掉文章. 但是,有可能重复, 因为新的回应会使帖子位置前移.这个问题这样解决:凡是我收集的文章统统加入我的收藏夹, 这样,更新时我只向索引里加入那些可以加入我的收藏夹的文章.



索引的局限:
水平有限, 不免错漏. 我尽力保留有价值的帖子. 不敢说没有在索引中的帖子就没有价值.但我一直在努力.
编辑者: hyl (07/12/02 13:56)

[目录]

--------------------------------------------------------------------------------


list1


关于faq----征求建议和合作者

请教linux内核版本2.0.35的进程切换

诚征版主,祝内核版越办越好!

编译内核时有很多东东不明白什么含义,哪位知道什么地方可以找到比较全面的资料

高手是怎么编译内核的啊?

编译内核之一

编译内核之三

编译内核之四

编译内核之五

编译内核之六(后记)

大家对NeXT,BeOS,Darwin这些变种如何看待,似乎国内很少有人谈及?

编译内核之二

提问:the STRUCTURE of Linux?

编译内核时,在哪部分把PCMIA卡编译掉?

微内核?进程调度?

linux的非微内核一直受竞争对手的非议,请问未来linux的发展在这方面有什么计划?(null)

一点题外话

书上说段页式内存管理是最好的内存管理方式,但LINUX的内存管理使用的是页式,为什莫?

1f是指什么,好象并没有1f的标签

编译内核是否只是简单的make config,若不是,请给我详细步骤。

那位大侠知道如何记录通过ipchains网关的数据报

要怎样建立放火墙

模块程序却出错如下:invalid parameter parm_a

块设备驱动程序的注册似乎都是通过调用register_blkdev(),

调用了netif_rx 函数。

请问tunable parameter

关于进程数

如何编写自己的设备驱动程序,又如何在C语言中调用

where the kernel start? why I can not find the function 'main()'?

请问可不可以在Linux下改网卡的硬件地址(将每个发送出去的数据包的硬件地址改为特定的值)?

编译的时候他说我的最后一行:missing seprator

lilo怎么改?image=? initrd

init在哪儿

__asm__是干什么的?

编译setup.S为什么有一大堆错误

想让内核将printk输出到messages文件

get_current(void)

在内核态,进程如何访问用户态空间的数据?

Bug大侠,该如何研究Linux的源代码

head.s中调用setup_paging时,内存0x1000起开始的几页全被清零,岂不是将内核代码head.s部分覆盖了,这是怎么回事?

内核首先读入内存0x10000处,但后又移至0x1000处,这样岂不是与内核页目录swapper_pg_dir地址冲突吗

inw()/outw()、inl()/outl(),其中b、w、l各是什么意思

如何安装3块网卡,每个网卡在一个网段

要写一个PCI卡(自制的)driver

加载modules时就提示有些目标文件中存在unresolved simbol

linux -- driver的编写 -- file_operations

装载lilo时会显示:“LILO:”,请问如何改变这个显示

关于BluePoint2.0的几个烂点:

include头文件modversions.h时,一般用什么条件?为什么我用的时候它总是和#include asm/uaccess.h冲突

用insmod装载模块时,出现了unresolved symbol

Linux的整体式结构决定了其内核的高效性

我用命令 mount -t vfat /dev/hda1 /mnt/c 发现,我的linux好象,不支持vfat

如何查看当前内核的配置参数

我们也做嵌入式,欢迎一起创业

kmalloc(),返回的地址不用设置页表,而vmalloc()需要。 这说明什么

__get_free_pages()返回的是物理地址还是虚拟地址

分析do_fork chldreg指针的赋值的问题小弟感觉很糊涂

linux -- driver -- __put_user

linux -- driver -- ioctl

How can I do a Linux Boot/Root Disk

编写驱动程序时,需要将硬件的物理地址为虚地址. LINUX内核如何保证这种影射对每个进程都是有效的.

如何在Windows或者DOS下编译内核

内核过程所允许使用的堆栈空间有多大

system.map到底有什么用

想利用时钟中断,想自己加入一些代码形成自己的中断服务程序.

用signal 的确可以做当异步地运行某个函数, 信号是否是以中断的形式运行的

起动盘为什么mount不上去

看不出head.s是如何调用start_kernal()函数的

start_kernel()中我怎么没有发现初始化网络部分的函数

head.s究竟是怎样调用start_kernel()函数的呢

Linux是不是对中断控制器重新编程过了

系统初始化

阅读setup.S原程序时,对下面进入保护模式程序段有点不理解

kernel_thread()是用来产生init进程的,然后由init全权处理进程,它怎么会初始化网络呢

段描述符高速缓存寄存器和描述符投影寄存器有什么区别

段描述符中有一位p用来区分此段是否在内存中,问题是若一段中部分叶在内存,部分不在内存,此位如何赋值

如何有效阅读内核代码?

init 进程启动之后,所有其他进程就由INIT进程全权处理。这时可以说系统内核已经完全启动起来吗?

在head.s-->;start_kernel()-->;启动init这个过程我还没有发现内核调用调度函数

能不能将内核的地址空间动态映射到用户空间的0xc0000000-0xffffffff 上去

已分配并不再使用的堆栈页面是对换到交换空间中还是直接被系统回收

Why I can't boot linux form fd(volume 1.722M) but fd(volume 1.44) can do?

调入系统模块到0x1000:0处时,为虾米还要判断es为64k对齐 为什么还要调用kill_motor

Pentium CPU CR0中的WP位是干什么用的?

CPU从用户的特权级3进入到内核的特权级0,请问这时是CPU如何完成这个中断指令的?

setup.S的bootsect_helper程序时,对于bios的15h中断的87号移低端内存到高端内存的参数有点不明白

do_mmap()函数 off&~PAGE_MASK的含义是什么?mm->;map_count 是何含义?mm->;locked_vm不是被锁定的vm的个数吗?

Oops是什么意思

为什么要去分析内核 我是菜鸟,但我是鹰的后代

setup.S中为什么需要置A20线

setup.S中移动剩余setup代码区的一个问题

那么当系统物理内存为最大值4G时,内核似乎只能管理它自已地址空间中的1G? 应用程序0-0x8048000有何作用?

pmd是指什麽

vfork的原意是什么

东东太多,我不知从哪下手!

8295A的断口号是怎么分配的

一篇ELF格式的详细说明

SYMBOL_NAME(...)和__asm__volatile(...)的功能是什么呢?

Linux中,局部描述符表LDT有何用呢?

__pa(x)是干什么用的

内核不使用虚拟内存,但是却把0xc0000000-4g的地址做为内核保留地址,这是怎么一会事

vmalloc分配的内存能否被swap out

ping的源代码

MEM_ALT_K是什么

__volatile__是什么功能

将一个极小的GUI机制引入内核可否?

Linux console font operation

在共享库定义共享段

Linux交换内存的一个缺陷

do_page_fault部分时,对里边提及的Pentium cpu缺陷(f00fc7c8冻结指令)很迷惑

解读vmlinux.lds.S

fixmap_init()函数是用来干虾米的?

lcall7 读trap_init()

paging_init()中的end_mem = (end_mem + ~mask) & mask;

static定义的变量放于哪个段

_edata和_end在哪儿定义

如何往内核加载模块

勇敢地蜕去你的陈年旧皮!

do_IRQ()中断号错误码的正负问题

build_irq"#"前缀

编译内核VFS:can't open root device 08:0a

mem_map结构数组中每个页面的age值是在什么时候更新的

GCC为2.96版,这是个非稳定的版本

说说用户进程的页面切换

kernel_threadregs.esp由从何而来呢?

Too many open files"问题

3g的虚拟内存到物理内存的映射是否都在task_struct中

为什么要有8M的隔离带?

为何总是报错VFS:unable to mount root fs on 08:01?

\linux\kernel\init\main.c开始的部分其偏移地址是否都被编译为从大于3G开始

lds定义了内核映象所有符号从PAGE_OFFSET(3G)处开始编址

Linux目前的体系只能管理2G物理内存?

编译好的内核为什么要要经过压缩?

系统状态保存在当前进程任务结构和内核堆栈中。进程间的切换点都在schedule()中

setup_arch()函数是如何得到命令行参数的

进程数据结构页面是如何保证不被换出内存的?

问_end的定义

mount和insmod一个模块的区别?网卡的混杂模式是什么意思?

mmap用于进程间文件共享,SYSV IPC用于进程间内存共享

当当前进程current的调度策略是FIFO时,其时间片current.counter为何没有重新赋值

加载模块时,想给参数赋值

开机后不要人干与就直接可起动我的应用

FIFO策略进程的时间片(counter)没有重新赋值

如何使linux进程的堆栈是不可运行的?

可重入 和 ret_from_intr

FIFO的进程其时间片在schedule()中被忽视而没有重新赋值.请问这是否会导致它被频繁的重新调度呢?

推荐内核分析风格

__asm__ __volitile__

我的看法

如何编程接收ppp0上的裸IP包?

PS/2鼠标工作原理和硬件编程的技术资料

请教如何读linux的Kernel

模块的版本相关性指什么?

当物理内存超过3G时就管理不了?

lcall7的入口处比system_call多压栈了一项pushfl

原代码看的工具lxr是怎么用的?

调用_free_page()后,该内存页真的被释放了吗

free_area_init()中bitmap_size 是否有问题?

对try_to_swap_out()的一点改进

Where is file for mapping kernel virtual address

有没有关于gunzip()的解压算法

gunzip()函数在解压缩piggy.o(真正的内核)时,是如何定位或寻址到piggy.o的内存地址的呢

堆中内存是如何分配的

这里的set_pte使我很疑惑,为什么用的不是物理地址,而是加上0xC0000000的虚拟地址呢

编译时决定virtual address吗?

boot.S, setup.S ... is running with real-mode?Need not mmu settings?

idle是内核线程,init线程已转变为普通进程

a paper about debugger

由于ELF中允许用.section自定义段

trampoline乱谈

SMP不太熟悉,有几个入门性的问题

如何在内核中获得键盘和鼠标的消息

引用内核中变量求助 EXPORT_SYMBOL()宏添加相应内核符号

outb_p :where define?what does "%w1" mean ?

Linux太难学了

读kmem_cache_estimate ()这个函数

kmem_cache_estimate 中的 L1_CACHE_ALIGN

slab分配器的设计思想

page aligned 是什么意思

用nice等命令设定的进程优先级有什么确切的含义

模块中的全局符号自动添加到系统符号表中,模块中不能使用EXPORT_SYMBOL(), 可用EXPORT

在内核态与用户态转变时,地址映射是相同的,堆栈区域不同

linux核心程序中怎样打开设备呢

怎样调试内核???gdb行吗?

硬件内存在系统内存空间中的映射问题

和malloc,calloc一样,一般是用sbrk系统调用实现的

Linux头文件中定义了进行串操作的函数,驱动程序可以使用它们来获得比C语言写的循环更好的性能

readahead使用的各个变量的意义

About kernel stack

section __ex_table,"a"和.previous 以及.fixed

请教各位如何使用SYSCTL的问题

System Call is a limitation??

About GET_CURRENT

Linux的TCP/IP协议栈阅读笔记(1)

Linux的TCP/IP协议栈阅读笔记(2)

Linux的TCP/IP协议栈阅读笔记(3)

Linux的TCP/IP协议栈阅读笔记(4)

Linux的TCP/IP协议栈阅读笔记(5)

Linux的TCP/IP协议栈阅读笔记(6)

Linux的TCP/IP协议栈阅读笔记(7)

About the Linux Kernel Analysis Book

Linux的TCP/IP协议栈阅读笔记(

请大虾们推柬一下读核工具

请问内核2.4版本的zone分配器的设计思想

可否在内核中进行截短文件操作?

在模块中调用系统调用

请问怎样正确查找函数原型?

MTRR是什么?

Linux-2.4.0网络部分改变

About multiple txt segment in an elf

建议阅读linux device drivers

模块化编程可否替换所有的系统调用

How to release a Module by itself ?

Linux设备驱动程序勘误表(部分)

内核中替代realloc()函数 的具体实现方法

什么是NR?

MAP_FIXED是什么固定映射?

正交持续性 自反系统

为何要保存flags? 只用cli()和sti()不可以么?

如何写直接读写硬盘的驱动程序

这种kmalloc,优先级参数应为GFP_AUTOMIC?

因为"Hello,World"在内核段中,使用段超越试试看

##是文本连接运算符

详细介绍slab的linux实现的文章连接

Linux防火墙程序设计

编译内核后,一定要重新链接System.map到新的System.map吗?

tty 到底是谁的abbreviation

Linux 模块调度问题和抢占

about EXPORT_SYMBOL

什么叫映象文件

mm/memory.c和mm/vmalloc.c各负责什么功能

怎样把自行编写的设备驱动程序添加到Linux核心中

谁知道netstat下的TIME_WAIT如何产生和避免

内核代码中经常使用固定数组而不是链表是为了编程简单?

用ioperm申请要存取的端口范围的访问权

TIME_WAIT状态有什么用

要先包含<linux/module.h>; <linux/kernel.h>;然后sleep_on_interruptible_timeout就正常了,不会崩掉了

函数init()的最后执行了 execve()函数,为什么内核代码没有被execve()所创建的新进程覆盖掉

dput()和dget()

个时间片大小是固定的吗?

kmem_cache_grow()开头的一串标志检测也让我不理解
[目录]

--------------------------------------------------------------------------------


list2



Shaper是一个限制网络速率的虚拟网络设备

jmpi go,INITSEG 是什么意思?

关于进程的flag,以及调度的一些概念

为何在 console_init()之后还不能打开/dev/console呀

do_wp_page

内存管理--end_mem解读

Unable to handle kernel paging request at virtual address...是从哪个模块报出来的?

按照原来配置重新编译2.4.0,重启后,屏幕显示:Uncompressing Linux ...Ok,booting the kernel.后就死机了

如何研究内核

有关kdev_t结构与次设备号的问题?

内存管理--free_area结构解读

内核地址手工转换,多是在填写页表时用到

进程管理--在时钟中断处理中为什么没有调用schedule函数

内存管理--memmap解读

请教Gcc源码的阅读问题

Unable to handle kernel paging request at virtual address....

Linux源代码讨论专用线索

我所看到的switch过程以及我的理解

我实现了一个进程切换方法

VFS: can't mount root filessystem . 这是怎么回事儿

内核栈

head.s中的LGDT装入gdt_descr处的内容...

内核空间在0xc0000000之上,但是如何使内核程序中访问的变量等的线形地址能够达到这个范围之上呢(因为段描述符的基地址是0),这是怎么做到的?(lds?)

汇编语言的语法

增加系统调用

块设备驱动,DMA内存,IDE硬盘的预读

traceroute的问题

在用户空间编写驱动程序

内核中的高端内存选项是怎么回事

在内核空间访问用户空间的问题

在地址0000开始的作了个中断向量表,这个是bios引导后实现的,还是dos获得系统控制权利后才做的事情??

中国的操作系统为什么停滞不前

在文件系统中struct dentry 是用来描述什么?

在x86平台上,io空间跟内存空间是分别编址的吗

Heap and Internal Fragmentation

文档最新动向 3月5日

/dev/ram,/dev/tty1等等,这些i节点是如何被创建的

消息可以代替信号?

About brk value, malloc, and heap

About contigeous virtual memory

About brk explaination from book.

在linux中,是怎么实现动态连接库的共享?地址和重入

raw disk I/O 的资料

todo & 遗留问题 & 计划介绍

一些资源

专题认领

源代码学习专题认领

编译过多次,但还是有些问题不能理解

外部中断的驱动怎么知道自己的3.硬件产生哪个中断?

对bottom half概念的一点理解

进程切换的时机


http://www.xfree86.org/
ftp://metalab.unc.edu/
http://www.xfree.org/FAQ/
http://www.xfree.org/#resources/
http://www.kde.org/
http://www.qt.org/
http://www.gnome.org/
http://www.gtk.org/
http://www.enlightenment.org/
http://www.opengroup.org/openmotif/
http://www.lesstif.org/
http://www.windowmaker.org/
http://www.gnustep.org/
http://www.itresearch.com/
ftp://ftp.funet.fi/pub/Linux/PEOPLE/Linus/SillySounds/
http://members.xoom.com/gnulix_guy/geek-gourmet/
http://www.csustan.edu/bazaar/


init process

在理解linux虚存的时候,我确总有些绕不过来

希望解决:3.硬件产生哪个中断的判别问题

Makefile 初探

所有的进程都公用_LDT(0)?

BUILD_IRQ宏

虚存难绕

Makefile解读之二

进程陷入内核时CR3的内容会改变吗?如果不变,如何存取内核空间呢?

barrier()的作用

Makefile解读之三: 模块的版本化处理

LDT:有点眉目了

系统调用流程

LINUX的系统内核空间的保护

Makefile解读之四: Rules.make的注释

HELP! printk() does not work in device module

as86汇编语言的语法说明

中断嵌套的问题

问题犹在:BUILD_COMMON_IRQ的宏展开

中断的部分代码解读

内核初起时如何从核心态进入用户态?

ASM格式简介

增加系统调用时的问题,虽已解决,但有的地方不太明白。

8259A的工作原理

Linux下的jiffies是10ms吗?

fork进程的学习

netfilter.c剖析1

getpid()

netfilter各个HOOK的关系

分析sockfs套接字文件系统

netfilter剖析2

backlog field in sock struct

所有进程在内核态的地址空间是一致的,可以相互访问的么

外设中的目录项(以EXT2为例)和内存中的"目录项"的比较

关于文件系统的安装与访问

Kernel 2.4中bottom half好象已经演化到soft-interrupt了

从系统调用open看源码

分析内核对gzip压缩文件进行解压的方法

sock 中zapped成员表示什

ip_tables.h分析

initrd 是干什么用的?

内核对以太网设备的探测过程

ISA网卡驱动程序的探测过程

sock结构的链接问题

read_lock()和write_lock()的过程描述如下

UNIX系统技术内幕》的第七章,介绍了自旋锁,看不懂他的改进

ISA网卡驱动程序发送和接收过程

EXT2的超级块与组描述符

新兵笔记--ULK(C2) beta版 Segmentation in Linux

网络包的排队发送过程

Linux secret.... (maybe)[Cross post]

Export了怎么还是无法resolve?

新兵笔记--ULK(Understanding the Linux Kernel) 序

关于netfilter的一点问题

ip_tables.c中组织规则的方式

内核打印的限速函数 net_ratelimit()

Confirm SA_INTERRUPT

trap和中断有什么不同啊

假如我要把PLT映射到内存的低端

Linux的硬件地址解析过程

inode和block之间有什么联系和区别

ip_tables.c的防火墙规则处理

内核堆栈与GET_CURRENT

根文件系统指的是哪个? 如何安装?

进程映象的过约束方法(overcommit_memory)

新兵笔记--ULK(C2) beta版 Paging in Hardware

ip_tables.c中防火墙规则环的检测

建立双向链表的一种常见方法

将root文件系统也放在一张软盘上

伙伴(buddy)算法的页面释放过程

ERR_PTR PTR_ERR(ptr) IS_ERR(ptr)

路由缓冲表的基本结构

IP包的接收过程

ip_tables.c的面向应用程序的接口

关于目录文件对象操作的一致性问题

IP包碎片重组过程

缓冲区管理与块设备

IP包的本地分发过程

vm_struct vs. vm_area_struct

从一个函数返回时,做什么?

套接字的基本结构

AT&T汇编与Intel汇编的比较1

AT&T汇编与Intel汇编比较2

设备驱动几个数据结构关系

对数据报套接字文件的select过程

MODULE_PARM(var,type)的功能是什么

EXT2:超级块----外部结构

EXT2:超级块----读入

EXT2:组描述符----外部结构

EXT2:组描述符----读入

EXT2:组描述符----查找

EXT2:inode位图----外部结构

EXT2:inode位图----读入

EXT2:概述

新兵笔记--ULK(C2) Paging in Linux

EXT2:inode----外部结构

EXT2:inode----查询与读入

EXT2:inode----分配

包缓冲区操作的几个内嵌函数

包队列操作的一些内嵌函数(续)

About init_mm and processes' mm

包缓冲的分配操作

信号处理问题

ip_tables.c的各个注册函数解释

execve的疑问

FD_SETSIZE问题,我补充了一点说明

get_user的使用

AT&T汇编语言的帮助文件

扩展的行内汇编手册

IP包的生成和发送接口

Linux网络接口层分析(之一):netif_rx

Kernel Hacking

open系统调用中对用户指针的检测

movl $pg0-_PAGE_OFFSET,%edi 其中的$pg0-_PAGE_OFFSET是什么意思?

关于Linux的路由

Segments are as follows:ds=es=ss=cs-INITSEG?

__get_free_pages()和free_pages()是最低层的内存分配和释放函数

新兵笔记--ULK(C3) Process Switching

EXT2:块----外部结构
[目录]

--------------------------------------------------------------------------------


list3



LOOPBACK网络回送设备

网络设备的IP地址结构

pci_bios_find_device

网络过滤器的基本结构

表驱动IP过滤器的基本工作过程

barrier()的疑问

open打开一个设备时,内核做了一些什么事情后才去调用相应的驱动的呀

新兵笔记--ULK(C3) Process Descriptor

核心中内存访问是否要进行页表转换

__init具体是什么作用

do_softirq() 初步探讨

内核semaphore初步

[rainfall]系统调用

时钟概述

init进程如何从内核态切换到用户态。

init进程从内核态切换到用户态(2)

我觉得现在的进度比较慢。

8259A的编程原理(2?)

分析rwlock的结构

分析rt_sigframe结构

tasklet_action()初步

分析access_ok的结构

请问2.4中实现net_bh功能的函数到哪里去了

分析test_wp_bit的过程

ptype_all结构的一点理解和网络初始化以后的组织图

set_call_gate以及其中的汇编

zone allocator

虚拟内存的管理,搞不懂!!

分析内核检测CPU时钟频率的过程

Process Scheduling灌水版

at&t汇编说明

分析几个页目录处理的宏

Solar Designer设计的stack不可运行的patch

外部中断的上半部分(一)

怎样取得skb结构中的内容!

Linux调试技术介绍

如何编程获得系统时间

(*(unsigned long *)&jiffies)与jiffies有何不同

谁能改变中断的优先级别

分页,自己瞎琢磨,想破头都搞不定

什么情况下需要使用volatile修饰符

硬件中断:8259部分

关于保护模式

不是linux的问题-一个切入保护模式的问题

内核重入

kernel和modules的区别

分析进入和退出VM86模式的过程

分析get_wchan()过程(调度)

分析两个用于进程链表的宏:SET_LINKS和REMOVE_LINK

中断门的设置

强烈推荐大家看看《Linux内核原代码分析》

硬件中断的入口

关于ptype_all链表和pypte_base的理解

什么是footprint,hotpath?

VM86模式下的保护异常处理

分析一下FPU状态的切换

2.4.1中lock_kernel()和unlock_kernel()的问题

在什么情况下会触发一般保护故障(GFP)

linux内核内存分配初探

足印footprint

分析__udelay()算法

分析进程信号队列的结构.

如何捕获所有的ip包

分析spinlock的结构

从系统调用中返回

在mm_struct中,active_mm 表示什么

内核只是将用户虚存区域描述成vm_area_struct链表

Page Table and Memory Cost

解释一下__attribute__

对semaphore初步分析

ret_from_intr 非抢占的判断

map_user_kiobuf 注释

解释一下memcmp

小课题 & 焦点(请跟贴)

十分的困惑--get_user?

软中断「一」

粗略分析一下Linux对进程调试的支持

谈一谈gcc编绎出的跳板(trampolines)代码。

_end在那儿定义的

使Linux堆栈不可执行的简易补丁

我的错误,大家可以借鉴(driver)

map_user_kiobuf的注释

[ jkl ]active_mm是什么

对BUILD_IRQ中 -256的解释

对重入的理解

分析内核模块的结构

内核空间偏移3G的疑问

VFS文件系统(1)

防火墙技术分析讲义( for aka lecture)

linux的Kernel映像可以存放在压缩文件系统中吗

VFS文件系统(2)

About swap_page_dir, kmalloc

分析内核模块的加载过程

内核变量声明问题 (switch)

free_area 中的map

About 2 pages of task_struct

About vm_area

About symbol and loadable module

定时器:实现机制:思想

Linux Kernel中,对线程的支持如下

os的对于进程的内存分配是基于线性地址还是物理的

About Copy On Write--do_wp_page()

分析用户对文件访问权的算法

分析任务切换时虚存的切换

关于kmalloc和vmalloc的问题

VFS文件系统(3)

分析路径名搜索过程

分析文件页缓冲结构

解读softirq

内核也好,用户进程也好都是线性0-4G地址

Linux内核网络参数的意义及应用

我对spinlock中rep nop的理解

请教有关ELF文件格式

网络设备的初始化是在何时做的

set_fs(get_fs())应改为set_fs(KERNEL_DS)

2.4的file_operations结构问题

Qdisc链的含义

请教关于GDT和LDT的问题?

为什么找不到__initcall__start变量的赋值语句(lds)

分析文件名检索的散列算法

软中断

dev_queue_xmit真不知道是怎么“蹦”出来的??

分析IDE硬盘驱动器读写过程

"paranoia"问题

__init free_area_init 中bitmap_size = (end_mem -PAGE_OFFSET) >;>; (PAGE_SHIFT + i); 的问题

讲讲notifier机制-看到register_netdevice_notifier是的困惑

定时器:介绍&使用

malloc是如何调用内核的服务来实现的

mmap 的问题

分析list_head结构

可以自定义内存区的操作函数吗

内核中网络部分问题

进程调度

应将__MODULE__改成MODULE。

硬件中断处理的三个对象

关于内核内存分配, 依然需要努力

想读内核,可是lxr始终不能用

看了二个多月的源代码很气馁!

分析RAMFS文件系统

讲解一下文件系统中主要的数据结构

虚拟文件系统的基本原理

#define MODVERSIONS(模块的问题真多)

我想恐怕可以提前结束了。<Linux的文件系统分析>

示例clone系统调用的使用方法

__builtin_constant_p()在哪里

页IO

请教一个模块编程键盘中断的例子

几个非阻塞socket连续向一个ip的不同端口connect 时

分析应用程序加载时堆栈中的参数结构

分析ELF的加载过程

请问“:”是什么意思? (fixup

Linux动态链接技术

setup.S的到head.S的跳转在那里

fib_lookup的疑问:fib表是如何构造以及在何时构造的呢?

vm_area_struct 的vm_flags 有一位VM_SHARED是什么意思

某些语句会导致gcc隐含地生成一个memset()调用

系统调用时的NR_syscall中是什么地址

netfilter各个HOOK的关系

将核心空间的内存映射到用户空间,或者将用户空间的内存映射到核心空间

netfilter.h的解释

有关ext2 super_block 的疑问

分析ext2文件系统物理块的分配过程

connect超时时间的一点探讨

关于TCP连接的应答问题

可以把整个ext2的分区的东西移植到reiserfs的分区?

内核是怎么得到网卡的硬件地址的

关于as86的一些资料

ip_input,ip_forward和ip_output

分析ext2文件系统文件块的分配过程

lvm技术

网卡混杂模式(promisc)

分析EXT2文件系统目?

主机端口

关于pagh_hash函数

关于framebuffer的问题

BUG()?

about tss?

ip_nat_hash的参数问题?

What's numa and CONFIG_DISCONTIGMEM

net_family_read_lock,为什么要lock,其中的原子操作是什么

tty终端的写入过程

Linux-2.4等待队列头的结构有了很大变化,应该用DECLEARE_WAIT_QUEUE_HEAD()定义等待队列头

I can't catch some codes in kernel/sched.c , why?

LKM中分配内存的问题。

When I read do_fork() in kernel/fork.c,??

新兵笔记--ULK(C4) Returning from Interrupts and Except

tty终端文件的异步操作

Why not find tss in task_struct

请教关于LINUX设备驱动编程的问题

Linux下IP――分片与重组

发送、接受、转发包处理结构框图--again:)

rt_priority?

PPP驱动程序的基本原理

有没有人对Ipsec感兴趣?

FIB的数据结构问题?

驱动程序与用户进程

谁能告诉我atomic_inc(Atomic.h)函数是什么意思?

BSD伪终端设备驱动程序

Help me check some codes about bootmem

uname的系统调用?

请教:tty.h 中的宏定义

What's meaning of "mapping" in struct page

a question about memory_pressure

local_table是什么?在哪里初始化的?inet_addr_inet函数有点看不懂

如何获得网络因CRC校验错丢失包的个数

struct page {...struct buffer_head *buffers...};

转发表的检索过程(fib_lookup)

ZERONET(x)和BADCLASS(x)是怎样确定广播地址的

哪位大侠帮忙解释一下fn_hash_lookup函数的作用,谢谢!

策略路由的NAT和netfilter的NAT的区别

请问get_fs和set_fs的作用

__attribute__ 是何意?

do_wp_page()函数的疑问??

PPP帧的发送

各位大虾,键盘如何来处理??

LinuxKernel的错误?--“console的问题

Linux设备驱动程序的中断

在中断处理中分配内存时没有使用GFP_ATOMIC标志

make modules" error on rh7.1

Booting:BIOS POST?

tcp_hashinfo结构里的那些hash table都是什么作用?

关于mmap的问题

Linux上gdb如何跟踪调试进dlopen内??

请问msg_name派什么用处?

分析ip_route_output_key( )中的一个疑惑?

为什么check_region不可解析?

对volatile的解释

套接字地址的绑定

关于2.4的内核初始化的问题

关于free_area空闲块数组?  

一个LKM的初级问题 (包含头文件)

关于Ext2文件系统

嵌入式Linux内核精解

freeswan中,谁在操纵SADB?

linux下几种地址的区别


http://www.sgi.com/processors/r10k/timing/perf_count.html


我们的CPU-胡伟武

一个关于通过/proc与内核通信的问题

关于BOOT引导的问题?

中断描述符分析小问.

分析块设备缓冲区结构

kmalloc等内核常用函数的文档有没有

关于buffer cache的问题

进程,轻量级进程,内核线程,库线程的切换分别是由谁来负责,切换时都分别保存了什么信息?

为什么 virt_to_ phys( )不能用

分析sigframe的结构

分析信号的执行过程

请教核心0.01中head.s的检测A20地址线代码的意义

我在Kernel里定义的函数,在用户空间里怎么才能用呢

关于内存布置的问题

lilo与bootsect.s,setup.s的关系

有谁知道这个结构多少字节

start_kernel(void)函数的分析

分析虚拟文件系统的结构

slab

在驱动程序中可以直接从I/O内存读数据到用户空间?

start_kernel()后是怎么工作的

内核程序中分配内存最大是多少?

有关gcc内嵌汇编代码的问题

请问.S和.s文件的不同?



关于汇编
http://www.linuxassembly.org
Linuxkernel推荐


关于AT&T格式:

http://www-106.ibm.com/developerworks/linux/library/l-ia.html
lisoleg推荐

关于汇编:
http://www-aig.jpl.nasa.gov/public/home/decoste/HTMLS/GNU/binutils/as_toc.html
http://www.linuxassembly.org/resources.html#tutorials
lucian推荐


别谢我,这都是从http://www2.linuxforum.net/ker_plan/index/main.htm
找到的,有空去看看。

///////////////////////////////////////////////////////////////
你可以下载bochs:http://sf.net/projects/bochs/

其中就有BIOS的汇编源程序,你认为是C也可以(C也内嵌着汇编嘛!).

不过,这个BIOS比较简单, 功能比较弱.
/////////////////////////////////////////////////////////////////


__builtin_constant_p 与移植

象CTRL~C和CTRL~V这样的中断信号内核中何时被初始化

A20可以通过两种方式进行控制



大概的意思是将代码段放到.text.init中去,至于为什么要这样做,这里有对于__section__的讨论。
http://gcc.gnu.org/ml/gcc/2000-05/msg00536.html
你可以去看看。  




calibrate-delay

最大分配128K?

Makefile中$<是什么?

请教有关usb编程的问题

[ chstar ]linux内核内存分配初探



links:
http://developer.intel.com/design/pentium4/manuals/

documents in pdf is good and enough for intel asm


Linux内核源代码漫游

386硬件支持得任务切换如何进行

linux0.0.1的内存转换问题

请问在内核中 HZ 是干什么用的

哪里有2.2内核的写驱动程序的文档

Ramdisk 和initrd,有什么用处?

诸位高手,看内核,从哪个入手的

哪位高人了解此函数usb_submint_urb

do_page_fault( )的几点疑惑

硬盘启动时,setup存储在哪里

内存转换问题

再问有关存储的三个问题

为什么动态连接库一定需要一个符号连结文件

我在查找内存分配错误的时候,找到了这 (ld 的_end)

build kernel步骤

.text .data .bss不要了会怎么样?

漫谈linux ieee1394

linux下能不能用c++来开发驱动程序呢

kpiod进程是做什么用的

关于内核内存初始化

请教一个linux下分段与分页的问题

spinlock_t?

请教mmap()的问题

有关ramdisk的问题

关于在proc下创建一个新项源代码的疑问

一个关于通过/proc与内核通信的问题

proc 文件系统分析(二)

对proc文件系统的分析(三)

proc文件系统分析(四)

关于南桥82371AB中断

创建进程和添加进程代码的概念

那位朋友讲一讲Linux对GDT的布置吗


增加系统调用的资料
http://202.113.16.117/cgi-bin/bbscon?linux/M.1005336295.A=4959

锁的实现
http://groups.yahoo.com/group/lisoleg/files/MultiProcessing/





请教关于内存访问的问题

更改后的发送、接受、转发包处理结构框图

386 boot代码分析

请教关于assert

对 proc 文件系统的分析(一)

逻辑地址如何转换为线性地址

Linux启动问题

内核中无法睡眠?

一个内核网络代码的问题:skbuff->;dst_entry跟rtable结构是什么关系?

pci_bios_read_config_byte

ODL-One Disk Linux

[jkl]宏#与##(例子见BUILD_IRQ)

bbs.zsu上讨论的一个关于arp的问题,至今没有好的答案

有关linux引导扇区的问题?

谁能介绍一下变量的属性是如何设置的?

内核程序无法睡眠(续?)

bbs.zsu上讨论的一个关于arp的问题,至今没有好的答案 (又贴了一遍?)

分析serial.c

HZ问题

就是为什么可以用send_sig_info使阻塞的函数返回的原因

为什么一执行lidt就重起

只知道可用宏put_user和get_user macrocs使内核能够存取用户内存缓冲区。但究竟怎么用呢

setjmp、longjmp的问题

在内核中如何得到当前系统的时间

给个内存管理的整体概念先

请问各位,printk()将调试信息写到哪去了

limit标志表示分配区内可分配页面的富余程度

双向规则是什么意思

What's diefference between vmlinux & bImage

rt cache的问题

用户程序可以自己将自己切换到内核态吗

keywords: execve,vfork,kernel_thread,vm

如何在系统加一个自己的ioctl命令号

Linux Notification 机制的分析

请问__builtin_return_address在哪儿定义的

打开A20地址线为什么要写0x60口?

[ Feiyun ]linux/arch/i386/kernel/head.S (2.4.9)

[ Feiyun ]linux/arch/i386/boot/bootsect.S (2.4.9)

[ Feiyun ]linux/arch/i386/boot/setup.S (2.4.9)

[ Feiyun ]linux/arch/i386/boot/compressed/head.S

[ Feiyun ]Linux makefiles (Linux 2.4.9)

在unix下可以加入自己的协议模块吗?......

如何将Module和整个内核分离开?

中断服务程序怎么没有运行

something about neighbour Table

关于netfilter 里nfcache字段

建议用module_init()宏来调用card_init

请教一个内存管理的问题

中断描述(todo用)

stack of kernel mode and user mode

交换缓冲

分析信号的发送过程

Signal 11 while compiling the kernel(转)

堆栈上的current指针

一大堆序列号呀?

关于local的含义

关于nmap的问题 (tcp)

LINUX TCP层分析之一-------------主动连接发送SYN包的tcp_connect

缺frame和缺page table是如何区分的?

C.O.W到底到那一级

do { } while (0)是什么意思

怎样得到kmalloc分配的内存地址的实际物理地址

asmlinkage

怎样获得系统的精确计时?越精确越好

这个bug是由于内核将用户进程在内核空间引起的页保护故障错误地当成了内核vmalloc区域的页不存在故障所致

Linux下IrDA方面的开发资料

关于smp的疑问

TLB到底存储了写什么

有关任务切换的问题

内核空间的预映射是怎么回事

我知道肯定是有些我没注意到的代码改动了skb->;len

about improved long long code sequences by linus

内核和用户态怎么共享内存

网络部分的proto_ops的方法是如何重载的

裁减内核到多少K等等,那么具体是那个文件的大小呢?

请教如何精简LINUX到8M以下

有关等待队列的问题

内核方式是否需要三级页表转化
[目录]

--------------------------------------------------------------------------------


list4



elf_check_arch是什么函数

请问#APP和#NOAPP是什么意思

什么是L1 cache aligned

d_cache 与 inode _cache的问题

linux网络部分重要结构体联

论坛徽章:
0
发表于 2003-04-21 22:30 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

不错,收下了,谢谢!

论坛徽章:
0
发表于 2003-04-21 23:23 |显示全部楼层

linux内核分析(转自某位大哥网上的笔记)

ding
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP