- 论坛徽章:
- 3
|
【MySQL】
php中的mysql客户端都没有设置超时的选项,mysqli和mysql都没有,但是libmysql是提供超时选项的,只是我们在php中隐藏了而已。
那么如何在PHP中使用这个操作捏,就需要我们自己定义一些MySQL操作常量,主要涉及的常量有:
MYSQL_OPT_READ_TIMEOUT=11;
MYSQL_OPT_WRITE_TIMEOUT=12;
这两个,定义以后,可以使用 options 设置相应的值。
不过有个注意点,mysql内部实现:
1. 超时设置单位为秒,最少配置1秒
2. 但mysql底层的read会重试两次,所以实际会是 3 秒
重试两次 + 自身一次 = 3倍超时时间,那么就是说最少超时时间是3秒,不会低于这个值,对于大部分应用来说可以接受,但是对于小部分应用需要优化。
查看一个设置访问mysql超时的php实例:
<?php
//自己定义读写超时常量
if (!defined('MYSQL_OPT_READ_TIMEOUT')) {
define('MYSQL_OPT_READ_TIMEOUT', 11);
}
if (!defined('MYSQL_OPT_WRITE_TIMEOUT')) {
define('MYSQL_OPT_WRITE_TIMEOUT', 12);
}
//设置超时
$mysqli = mysqli_init();
$mysqli->options(MYSQL_OPT_READ_TIMEOUT, 3);
$mysqli->options(MYSQL_OPT_WRITE_TIMEOUT, 1);
//连接数据库
$mysqli->real_connect("localhost", "root", "root", "test" ;
if (mysqli_connect_errno()) {
printf("Connect failed: %s/n", mysqli_connect_error());
exit();
}
//执行查询 sleep 1秒不超时
printf("Host information: %s/n", $mysqli->host_info);
if (!($res=$mysqli->query('select sleep(1)'))) {
echo "query1 error: ". $mysqli->error ."/n";
} else {
echo "Query1: query success/n";
}
//执行查询 sleep 9秒会超时
if (!($res=$mysqli->query('select sleep(9)'))) {
echo "query2 error: ". $mysqli->error ."/n";
} else {
echo "Query2: query success/n";
}
$mysqli->close();
echo "close mysql connection/n";
?>
延伸阅读:
http://blog.csdn.net/heiyeshuwu/article/details/5869813
【Memcached】
[PHP扩展]
php_memcache 客户端:
连接超时:bool Memcache::connect ( string $host [, int $port [, int $timeout ]] )
在get和set的时候,都没有明确的超时设置参数。
libmemcached 客户端:在php接口没有明显的超时参数。
说明:所以说,在PHP中访问Memcached是存在很多问题的,需要自己hack部分操作,或者是参考网上补丁。
[C&C++访问Memcached]
客户端:libmemcached 客户端
说明:memcache超时配置可以配置小点,比如5,10个毫秒已经够用了,超过这个时间还不如从数据库查询。
下面是一个连接和读取set数据的超时的C++示例:
//创建连接超时(连接到Memcached)
memcached_st* MemCacheProxy::_create_handle()
{
memcached_st * mmc = NULL;
memcached_return_t prc;
if (_mpool != NULL) { // get from pool
mmc = memcached_pool_pop(_mpool, false, &prc);
if (mmc == NULL) {
__LOG_WARNING__("MemCacheProxy", "get handle from pool error [%d]", (int)prc);
}
return mmc;
}
memcached_st* handle = memcached_create(NULL);
if (handle == NULL){
__LOG_WARNING__("MemCacheProxy", "create_handle error" ;
return NULL;
}
// 设置连接/读取超时
memcached_behavior_set(handle, MEMCACHED_BEHAVIOR_HASH, MEMCACHED_HASH_DEFAULT);
memcached_behavior_set(handle, MEMCACHED_BEHAVIOR_NO_BLOCK, _noblock); //参数MEMCACHED_BEHAVIOR_NO_BLOCK为1使超时配置生效,不设置超时会不生效,关键时候会悲剧的,容易引起雪崩
memcached_behavior_set(handle, MEMCACHED_BEHAVIOR_CONNECT_TIMEOUT, _connect_timeout); //连接超时
memcached_behavior_set(handle, MEMCACHED_BEHAVIOR_RCV_TIMEOUT, _read_timeout); //读超时
memcached_behavior_set(handle, MEMCACHED_BEHAVIOR_SND_TIMEOUT, _send_timeout); //写超时
memcached_behavior_set(handle, MEMCACHED_BEHAVIOR_POLL_TIMEOUT, _poll_timeout);
// 设置一致hash
// memcached_behavior_set_distribution(handle, MEMCACHED_DISTRIBUTION_CONSISTENT);
memcached_behavior_set(handle, MEMCACHED_BEHAVIOR_DISTRIBUTION, MEMCACHED_DISTRIBUTION_CONSISTENT);
memcached_return rc;
for (uint i = 0; i < _server_count; i++){
rc = memcached_server_add(handle, _ips, _ports);
if (MEMCACHED_SUCCESS != rc) {
__LOG_WARNING__("MemCacheProxy", "add server [%s:%d] failed.", _ips, _ports);
}
}
_mpool = memcached_pool_create(handle, _min_connect, _max_connect);
if (_mpool == NULL){
__LOG_WARNING__("MemCacheProxy", "create_pool error" ;
return NULL;
}
mmc = memcached_pool_pop(_mpool, false, &prc);
if (mmc == NULL) {
__LOG_WARNING__("MyMemCacheProxy", "get handle from pool error [%d]", (int)prc);
}
//__LOG_DEBUG__("MemCacheProxy", "get handle [%p]", handle);
return mmc;
}
//设置一个key超时(set一个数据到memcached)
bool MemCacheProxy::_add(memcached_st* handle, unsigned int* key, const char* value, int len, unsigned int timeout)
{
memcached_return rc;
char tmp[1024];
snprintf(tmp, sizeof (tmp), "%u#%u", key[0], key[1]);
//有个timeout值
rc = memcached_set(handle, tmp, strlen(tmp), (char*)value, len, timeout, 0);
if (MEMCACHED_SUCCESS != rc){
return false;
}
return true;
}
//Memcache读取数据超时 (没有设置)
libmemcahed 源码中接口定义:
LIBMEMCACHED_API char *memcached_get(memcached_st *ptr,const char *key, size_t key_length,size_t *value_length,uint32_t *flags,memcached_return_t *error);
LIBMEMCACHED_API memcached_return_t memcached_mget(memcached_st *ptr,const char * const *keys,const size_t *key_length,size_t number_of_keys);
从接口中可以看出在读取数据的时候,是没有超时设置的。
延伸阅读:
http://hi.baidu.com/chinauser/item/b30af90b23335dde73e67608
http://libmemcached.org/libMemcached.html
【如何实现超时】
程序中需要有超时这种功能,比如你单独访问一个后端Socket模块,Socket模块不属于我们上面描述的任何一种的时候,它的协议也是私有的,那么这个时候可能需要自己去实现一些超时处理策略,这个时候就需要一些处理代码了。
[PHP中超时实现]
一、初级:最简单的超时实现 (秒级超时)
思路很简单:链接一个后端,然后设置为非阻塞模式,如果没有连接上就一直循环,判断当前时间和超时时间之间的差异。
php socket 中实现原始的超时:(每次循环都当前时间去减,性能会很差,cpu占用会较高)<?
$host = "127.0.0.1";
$port = "80";
$timeout = 15; //timeout in seconds
$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP)
or die("Unable to create socket\n" ;
socket_set_nonblock($socket) //务必设置为阻塞模式
or die("Unable to set nonblock on socket\n" ;
$time = time();
//循环的时候每次都减去相应值
while (!@socket_connect($socket, $host, $port)) //如果没有连接上就一直死循环
{
$err = socket_last_error($socket);
if ($err == 115 || $err == 114)
{
if ((time() - $time) >= $timeout) //每次都需要去判断一下是否超时了
{
socket_close($socket);
die("Connection timed out.\n" ;
}
sleep(1);
continue;
}
die(socket_strerror($err) . "\n" ;
}
socket_set_block($this->socket) //还原阻塞模式
or die("Unable to set block on socket\n" ;
?>
二、升级:使用PHP自带异步IO去实现(毫秒级超时)
说明:
异步IO:异步IO的概念和同步IO相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。异步IO将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。
多路复用:复用模型是对多个IO操作进行检测,返回可操作集合,这样就可以对其进行操作了。这样就避免了阻塞IO不能随时处理各个IO和非阻塞占用系统资源的确定。
使用 socket_select() 实现超时
socket_select(..., floor($timeout), ceil($timeout*1000000));
select的特点:能够设置到微秒级别的超时!
使用socket_select() 的超时代码(需要了解一些异步IO编程的知识去理解)
### 调用类 ####
<?php
$server = new Server;
$client = new Client;
for (; {
foreach ($select->can_read(0) as $socket) {
if ($socket == $client->socket) {
// New Client Socket
$select->add(socket_accept($client->socket));
}
else {
//there's something to read on $socket
}
}
}
?>
### 异步多路复用IO & 超时连接处理类 ###
<?php
class select {
var $sockets;
function select($sockets) {
$this->sockets = array();
foreach ($sockets as $socket) {
$this->add($socket);
}
}
function add($add_socket) {
array_push($this->sockets,$add_socket);
}
function remove($remove_socket) {
$sockets = array();
foreach ($this->sockets as $socket) {
if($remove_socket != $socket)
$sockets[] = $socket;
}
$this->sockets = $sockets;
}
function can_read($timeout) {
$read = $this->sockets;
socket_select($read,$write = NULL,$except = NULL,$timeout);
return $read;
}
function can_write($timeout) {
$write = $this->sockets;
socket_select($read = NULL,$write,$except = NULL,$timeout);
return $write;
}
}
?>
[C&C++中超时实现]
一般在Linux C/C++中,可以使用:alarm() 设置定时器的方式实现秒级超时,或者:select()、poll()、epoll() 之类的异步复用IO实现毫秒级超时。也可以使用二次封装的异步io库(libevent, libev)也能实现。
一、使用alarm中用信号实现超时 (秒级超时)
说明:Linux内核connect超时通常为75秒,我们可以设置更小的时间如10秒来提前从connect中返回。这里用使用信号处理机制,调用alarm,超时后产生SIGALRM信号 (也可使用select实现)
用 alarym 秒级实现 connect 设置超时代码示例:
//信号处理函数
static void connect_alarm(int signo)
{
debug_printf("SignalHandler" ;
return;
}
//alarm超时连接实现
static void conn_alarm()
{
Sigfunc * sigfunc ; //现有信号处理函数
sigfunc=signal(SIGALRM, connect_alarm); //建立信号处理函数connect_alarm,(如果有)保存现有的信号处理函数
int timeout = 5;
//设置闹钟
if( alarm(timeout)!=0 ){
//... 闹钟已经设置处理
}
//进行连接操作
if (connect(m_Socket, (struct sockaddr *)&addr, sizeof(addr)) < 0 ) {
if ( errno == EINTR ) { //如果错误号设置为EINTR,说明超时中断了
debug_printf("Timeout");
m_connectionStatus = STATUS_CLOSED;
errno = ETIMEDOUT; //防止三次握手继续进行
return ERR_TIMEOUT;
}
else {
debug_printf("Other Err");
m_connectionStatus = STATUS_CLOSED;
return ERR_NET_SOCKET;
}
}
alarm(0);//关闭时钟
signal(SIGALRM, sigfunc); //(如果有)恢复原来的信号处理函数
return;
}
//读取数据的超时设置
同样可以为 recv 设置超时,5秒内收不到任何应答就中断
signal( ... );
alarm(5);
recv( ... );
alarm(0);
static void sig_alarm(int signo){return;}
当客户端阻塞于读(readline,...)时,如果此时服务器崩了,客户TCP试图从服务器接收一个ACK,持续重传 数据分节,大约要等9分钟才放弃重传,并返回一个错误。因此,在客户读阻塞时,调用超时。
二、使用异步复用IO使用 (毫秒级超时)
异步IO执行流程:
1.首先将标志位设为Non-blocking模式,准备在非阻塞模式下调用connect函数
2.调用connect,正常情况下,因为TCP三次握手需要一些时间;而非阻塞调用只要不能立即完成就会返回错误,所以这里会返回EINPROGRESS,表示在建立连接但还没有完成。
3.在读套接口描述符集(fd_set rset)和写套接口描述符集(fd_set wset)中将当前套接口置位(用FD_ZERO()、FD_SET()宏),并设置好超时时间(struct timeval *timeout)
4.调用select( socket, &rset, &wset, NULL, timeout )
返回0表示connect超时,如果你设置的超时时间大于75秒就没有必要这样做了,因为内核中对connect有超时限制就是75秒。
//select 实现毫秒级超时示例:
static void conn_select() {
// Open TCP Socket
m_Socket = socket(PF_INET,SOCK_STREAM,0);
if( m_Socket < 0 )
{
m_connectionStatus = STATUS_CLOSED;
return ERR_NET_SOCKET;
}
struct sockaddr_in addr;
inet_aton(m_Host.c_str(), &addr.sin_addr);
addr.sin_port = htons(m_Port);
addr.sin_family = PF_INET;
// Set timeout values for socket
struct timeval timeouts;
timeouts.tv_sec = SOCKET_TIMEOUT_SEC ; // const -> 5
timeouts.tv_usec = SOCKET_TIMEOUT_USEC ; // const -> 0
uint8_t optlen = sizeof(timeouts);
if( setsockopt( m_Socket, SOL_SOCKET, SO_RCVTIMEO,&timeouts,(socklen_t)optlen) < 0 )
{
m_connectionStatus = STATUS_CLOSED;
return ERR_NET_SOCKET;
}
// Set the Socket to TCP Nodelay ( Send immediatly after a send / write command )
int flag_TCP_nodelay = 1;
if ( (setsockopt( m_Socket, IPPROTO_TCP, TCP_NODELAY,
(char *)&flag_TCP_nodelay, sizeof(flag_TCP_nodelay))) < 0)
{
m_connectionStatus = STATUS_CLOSED;
return ERR_NET_SOCKET;
}
// Save Socket Flags
int opts_blocking = fcntl(m_Socket, F_GETFL);
if ( opts_blocking < 0 )
{
return ERR_NET_SOCKET;
}
//设置为非阻塞模式
int opts_noblocking = (opts_blocking | O_NONBLOCK);
// Set Socket to Non-Blocking
if (fcntl(m_Socket, F_SETFL, opts_noblocking)<0)
{
return ERR_NET_SOCKET;
}
// Connect
if ( connect(m_Socket, (struct sockaddr *)&addr, sizeof(addr)) < 0)
{
// EINPROGRESS always appears on Non Blocking connect
if ( errno != EINPROGRESS )
{
m_connectionStatus = STATUS_CLOSED;
return ERR_NET_SOCKET;
}
// Create a set of sockets for select
fd_set socks;
FD_ZERO(&socks);
FD_SET(m_Socket,&socks);
// Wait for connection or timeout
int fdcnt = select(m_Socket+1,NULL,&socks,NULL,&timeouts);
if ( fdcnt < 0 )
{
return ERR_NET_SOCKET;
}
else if ( fdcnt == 0 )
{
return ERR_TIMEOUT;
}
}
//Set Socket to Blocking again
if(fcntl(m_Socket,F_SETFL,opts_blocking)<0)
{
return ERR_NET_SOCKET;
}
m_connectionStatus = STATUS_OPEN;
return 0;
}
说明:在超时实现方面,不论是什么脚本语言:PHP、Python、Perl 基本底层都是C&C++的这些实现方式,需要理解这些超时处理,需要一些Linux 编程和网络编程的知识。
延伸阅读:
http://blog.sina.com.cn/s/blog_4462f8560100tvgo.html
http://blog.csdn.net/thimin/article/details/1530839
http://hi.baidu.com/xjtdy888/item/93d9daefcc1d31d1ea34c992
http://blog.csdn.net/byxdaz/article/details/5461142
http://blog.163.com/xychenbaihu@ ... 965520112163171778/
http://hi.baidu.com/suyupin/item/df10004decb620e91f19bcf5
http://stackoverflow.com/questio ... -timeout-with-alarm
http://stackoverflow.com/questio ... -at-testserver?lq=1
http://cppentry.com/bencandy.php?fid=54&id=1129
【 总结 】
1. PHP应用层如何设置超时?
PHP在处理超时层次有很多,不同层次,需要前端包容后端超时:
浏览器(客户端) -> 接入层 -> Web服务器 -> PHP -> 后端 (MySQL、Memcached)
就是说,接入层(Web服务器层)的超时时间必须大于PHP(PHP-FPM)中设置的超时时间,不然后面没处理完,你前面就超时关闭了,这个会很杯具。还有就是PHP的超时时间要大于PHP本身访问后端(MySQL、HTTP、Memcached)的超时时间,不然结局同前面。
2. 超时设置原则是什么?
如果是希望永久不超时的代码(比如上传,或者定期跑的程序),我仍然建议设置一个超时时间,比如12个小时这样的,主要是为了保证不会永久夯住一个php进程或者后端,导致无法给其他页面提供服务,最终引起所有机器雪崩。
如果是要要求快速响应的程序,建议后端超时设置短一些,比如连接500ms,读1s,写1s,这样的速度,这样能够大幅度减少应用雪崩的问题,不会让服务器负载太高。
3. 自己开发超时访问合适吗?
一般如果不是万不得已,建议用现有很多网络编程框架也好、基础库也好,里面一般都带有超时的实现,比如一些网络IO的lib库,尽量使用它们内置的,自己重复造轮子容易有bug,也不方便维护(不过如是是基于学习的目的就当别论了)。
4. 其他建议
超时在所有应用里都是大问题,在开发应用的时候都要考虑到。我见过一些应用超时设置上百秒的,这种性能就委实差了,我举个例子:
比如你php-fpm开了128个php-cgi进程,然后你的超时设置的是32s,那么我们如果后端服务比较差,极端情况下,那么最多每秒能响应的请求是:
128 / 32 = 4个
你没看错,1秒只能处理4个请求,那服务也太差了!虽然我们可以把php-cgi进程开大,但是内存占用,还有进程之间切换成本也会增加,cpu呀,内存呀都会增加,服务也会不稳定。所以,尽量设置一个合理的超时值,或者督促后端提高性能。
本文有部分经验值,还有部分参考的内容,如果不足之处,还请指正。
http://blog.csdn.net/heiyeshuwu/article/details/7841366 |
|