免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 1810 | 回复: 1
打印 上一主题 下一主题

纳什均衡理论 [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2012-10-09 16:42 |只看该作者 |倒序浏览
纳什均衡,Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。
  假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的  纳什均衡
最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。   纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,以下的囚徒困境就是一个例子。
囚徒困境
  (1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。)   假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证  纳什均衡
据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
硬币正反
  你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?   每一种游戏依具其规则的不同会存在两种纳什均衡,一种是纯策略纳什均衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什均衡,而在这个游戏中,便应该采用混合策略纳什均衡。   n\m 美女出正面 美女出反面
你出正面 +3,-3 -2,+2
你出反面 -2,+2 +1,-1
假设我们出正面的概率是x,反面的概率是1-x,美女出正面的概率是y,反面的概率是1-y。为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等,由此列出方程就是   3x + (-2)*(1-x)=(-2) * x + 1*( 1-x )   解方程得x=3/8。   同样,美女的收益,列方程   -3y + 2( 1-y)= 2y+ (-1) * ( 1-y)   解得y也等于3/8,而美女每次的期望收益则是 2(1-y)- 3y = 1/8元。这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢1/8元。   其实只要美女采取了(3/8,5/这个方案,不论你再采用什么方案,都是不能改变局面的。如果全部出正面,每次的期望收益是 (3+3+3-2-2-2-2-2)/8=-1/8元;如果全部出反面,每次的期望收益也是(-2-2-2+1+1+1+1+1)/8=-1/8元。而任 何策略无非只是上面两种策略的线性组合,所以期望还是-1/8元。但是当你也采用最佳策略时,至少可以保证自己输得最少。否则,你肯定就会被美女采用的策略针对,从而赔掉更多。

论坛徽章:
31
CU十四周年纪念徽章
日期:2018-10-22 09:15:1815-16赛季CBA联赛之广东
日期:2016-11-29 15:30:3915-16赛季CBA联赛之新疆
日期:2016-01-22 13:54:28黄金圣斗士
日期:2015-11-13 16:34:572015亚冠之水原三星
日期:2015-11-03 14:09:182015亚冠之柏太阳神
日期:2015-07-18 14:24:16羊年新春福章
日期:2015-04-07 10:31:532015年亚洲杯之澳大利亚
日期:2015-03-09 16:09:08羊年新春福章
日期:2015-02-02 17:40:57处女座
日期:2014-12-18 15:37:46白羊座
日期:2014-11-20 15:41:4815-16赛季CBA联赛之深圳
日期:2016-12-07 16:01:22
2 [报告]
发表于 2012-10-10 10:29 |只看该作者
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP