- 论坛徽章:
- 3
|
本帖最后由 captivated 于 2012-10-22 21:14 编辑
把第三小节翻了... 这个小节比较简单, 而且是重复的内容. 根本就不用翻... 说是形式化定义神马的, 和前面比起来也没形式化到哪里去... 要说嘛 可能是因为 λ本身就是形式化的吧啊喂...
3 Formal definition 形式化定义
3.1 Definition
3.2 Notation
3.3 Free and bound variables
=========================================================
3.1 Definition 定义
---------------------------------------------------------
Lambda expressions are composed of
λ表达式有如下基本符号集.
variables v1, v2, ..., vn, ...
the abstraction symbols λ and .
parentheses ( )
变量, v1, v2, ..., vn, ...
抽象符号, λ and .
括号 ( )
The set of lambda expressions, Λ, can be defined inductively:
λ表达式的集合用 Λ 表示. 该集合可以归纳地定义如下:
If x is a variable, then x ∈ Λ
If x is a variable and M ∈ Λ, then (λx.M) ∈ Λ
If M, N ∈ Λ, then (M N) ∈ Λ
1. 如果 x 是一个变量, x ∈ Λ
2. 如果 x 是一个变量而且 M ∈ Λ, 那么 (λx.M) ∈ Λ
3. 如果 M, N ∈ Λ, 那么 (M N) ∈ Λ
Instances of rule 2 are known as abstractions and instances of rule 3 are known as applications.[5]
上面的归纳定义中, 第二条归纳定义的实例即 λ抽象, 第三条归纳定义的实例即 λ应用.
---------------------------------------------------------
3.2 Notation 标记方法
---------------------------------------------------------
To keep the notation of lambda expressions uncluttered, the following conventions are usually applied.
为保持 λ表达式标记清晰, 一般遵循如下标记惯例.
@ Outermost parentheses are dropped: M N instead of (M N)
@ Applications are assumed to be left associative: M N P may be written instead of ((M N) P)[6]
@ The body of an abstraction extends as far right as possible: λx.M N means λx.(M N) and not (λx.M) N
@ A sequence of abstractions is contracted: λx.λy.λz.N is abbreviated as λxyz.N[7][8]
@ 没必要把整个表达式外围括起来. 即, 写 M N, 不写 (M N)
@ λ应用是左结合的. 写 M N P 就行了, 没必要写 ((M N) P)
@ λ抽象一直扩展到表达式最右边. λx.M N 表示 λx.(M N), 而不是 (λx.M) N
@ λ抽象序列可以缩写. λx.λy.λz.N 可以缩写为 λxyz.N
---------------------------------------------------------
3.3 Free and bound variables 自由变量和绑定变量
---------------------------------------------------------
The abstraction operator, λ, is said to bind its variable wherever it occurs in the body of the abstraction. Variables that fall within the scope of a lambda are said to be bound. All other variables are called free. For example in the following expression y is a bound variable and x is free: λy.x x y. Also note that a variable binds to its "nearest" lambda. In the following expression one single occurrence of x is bound by the second lambda: λx.y (λx.z x)
λ是一个 λ抽象运算符. 这个运算符所做的运算就是, 将变量绑定到其于λ抽象体出现的位置上. 如是位于该 λ作用域内的变量都被绑定了. 没有位于该 λ作用域内的变量即自由变量. 如 λy.x x y, 在这个 λ表达式中 y 是被绑定的而 x 是自由的[madao: 这个 λ表达式就是 y -> x x y. 为什么, 参见3.2 Notation一节. 有童鞋就要问了, y -> x x y 这里面怎么没有(加减乘除之类的)运算啊? -- 谁说要运算了. λ就没说它要做什么运算啊. 人家明明白白告诉了么, λ这个运算符就是把里面的变量在其出现位置替换就完了, 这个替换动作就是λ运算].
还要注意的是, 变量绑定到"离它最近"的 λ. 比如, λx.y (λx.z x) 这个表达式, x 由第二个 λ 运算符绑定.
The set of free variables of a lambda expression, M, is denoted as FV(M) and is defined by recursion on the structure of the terms, as follows:
一个 λ表达式中的自由变量集合, M, 一般表示为 FV(M) 并且由如下结构形式递归地定义:
FV(x) = {x}, where x is a variable
FV(λx.M) = FV(M) \ {x}
FV(M N) = FV(M) ∪ FV(N)[9]
An expression that contains no free variables is said to be closed. Closed lambda expressions are also known as combinators and are equivalent to terms in combinatory logic.
我们称一个没有自由变量的 λ表达式是闭合的. 闭合的lambda表达式也就是人们所知的“组合子”,这个概念和组合子逻辑学中的概念“组合子项”等价。[madao: 感谢starwing83指正]
[madao: 顺便, 闭包, closure的原始概念就是说某个运算在某个集合上闭合(结果在集合内)的意思, 参见链接: http://www.codinglabs.org/html/c ... ional-language.html]
========================================================= |
|