- 论坛徽章:
- 0
|
本人因工作需要,需要写一个python脚本定时检测263邮箱并查看mysql的slowquery邮件,脚本代码如下:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import imaplib
import email
def extract_body(payload):
if isinstance(payload,str):
return payload
else:
return '\n'.join([extract_body(part.get_payload()) for part in payload])
conn = imaplib.IMAP4("imap.263.net",143)
conn.login("ops@tech.com", "xxxxxxxxx"
conn.select()
typ, data = conn.search(None,’FROM’,’”mysql”’,’UNSEEN')
try:
for num in data[0].split():
typ, msg_data = conn.fetch(num, '(RFC822)')
for response_part in msg_data:
if isinstance(response_part, tuple):
msg = email.message_from_string(response_part[1])
From=msg['from']
date=msg['date']
subject=msg['subject']
payload=msg.get_payload()
body=extract_body(payload)
print(subject)
print(body)
#typ, response = conn.store(num, '+FLAGS', r'(\Seen)')
finally:
try:
conn.close()
except:
pass
conn.logout()
输出内容如下:
mysql@tech.com (发件人)
# 839s user time, 1.1s system time, 66.83M rss, 247.18M vsz (正文)
# Current date: Sat Jun 27 04:14:06 2015
# Hostname: mysqldb
# Files: /home/dba/slowlog/db-slow-150626.log
# Overall: 3.19M total, 891 unique, 36.92 QPS, 0.61x concurrency _________
# Time range: 2015-06-26 00:00:03 to 23:59:58
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======
# Exec time 52727s 57us 421s 17ms 14ms 385ms 366us
# Lock time 1004s 0 4s 314us 159us 5ms 31us
# Rows sent 140.35M 0 901.28k 46.14 51.63 519.96 26.08
# Rows examine 3.17G 0 13.31M 1.04k 793.42 25.83k 51.63
# Rows affecte 5.23M 0 4.50M 1.72 0 2.57k 0
# Bytes sent 18.82G 0 1005.37M 6.19k 6.01k 550.16k 3.19k
# Query size 284.84M 6 174.03k 93.64 223.14 180.86 54.21
# Time 2.25G 147.10k 147.10k 147.10k 147.10k 0 147.10k
# Query 1: 0.17 QPS, 69.11x concurrency, ID 0x79D92C01B791F7D2 at byte 653180000
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.20
# Time range: 2015-06-26 19:51:22 to 19:51:34
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 0 2
# Exec time 1 829s 408s 421s 415s 421s 9s 415s
# Lock time 0 364us 175us 189us 182us 189us 9us 182us
# Rows sent 0 0 0 0 0 0 0 0
# Rows examine 0 11.05M 5.46M 5.59M 5.52M 5.59M 96.52k 5.52M
# Rows affecte 0 0 0 0 0 0 0 0
# Bytes sent 0 0 0 0 0 0 0 0
# Query size 0 408 204 204 204 204 0 204
# String:
# Databases xxxxxxx
# Hosts 172.16.0.166 (1/50%), 172.16.0.90 (1/50%)
# Last errno 1160
# Users xxxxxxx
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `xxxx` LIKE 'xxxx'\G
# SHOW CREATE TABLE `xxxxx`.`xxxxx`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT `xxxxx`.* FROM `xxxxxxxxxx` WHERE (xxxxxxx NOT IN (266)) AND (xxxxxxx = '1179') AND (xxxxxx != AND (xxxxxx IN (2, 3, 4, 5, 6))
ORDER BY `xxxxxx`.`xxxxxxxxx` DESC LIMIT 50\G
# Query 2: 0 QPS, 0x concurrency, ID 0xC28655C387745DC1 at byte 116383530
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.00
# Time range: all events occurred at 2015-06-26 16:05:00
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 0 1
# Exec time 0 74s 74s 74s 74s 74s 0 74s
# Lock time 0 6ms 6ms 6ms 6ms 6ms 0 6ms
# Rows sent 0 0 0 0 0 0 0 0
# Rows examine 0 4.50M 4.50M 4.50M 4.50M 4.50M 0 4.50M
# Rows affecte 86 4.50M 4.50M 4.50M 4.50M 4.50M 0 4.50M
# Bytes sent 0 59 59 59 59 59 0 59
# Query size 0 85 85 85 85 85 0 85
# String:
# Databases testdb
# Hosts 172.16.1.194
# Last errno 0
# Users xxxxxxxx
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `xxxxxxxx` LIKE 'xxxxxxxxx'\G
# Converted for EXPLAIN
# EXPLAIN /*!50100 PARTITIONS*/
select * from xxxxxxx.xxxxxx\G
# Query 3: 0.03 QPS, 0.51x concurrency, ID 0x625F7392919EF414 at byte 30988
# This item is included in the report because it matches --limit.
# Scores: V/M = 2.89
# Time range: 2015-06-26 03:05:22 to 03:24:33
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 0 31
# Exec time 1 582s 15s 39s 19s 35s 7s 15s
# Lock time 0 847us 19us 55us 27us 44us 8us 23us
# Rows sent 0 14.65k 0 500 483.87 487.09 86.06 487.09
# Rows examine 6 200.22M 5.27M 13.31M 6.46M 11.87M 2.43M 5.18M
# Rows affecte 0 0 0 0 0 0 0 0
# Bytes sent 0 267.82k 137 8.92k 8.64k 8.89k 1.55k 8.89k
# Query size 0 5.53k 181 183 182.65 174.84 0 174.84
# Time 0 4.45M 147.10k 147.10k 147.10k 147.10k 0 147.10k
# String:
# Databases xxxxxxx
# Hosts 172.16.2.133
# Last errno 0
# Users xxxxxxxx
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `xxxxxxx` LIKE 'xxxxxxxxxxxxx'\G
# SHOW CREATE TABLE `xxxxxxxx`.`xxxxxxx`\G
# EXPLAIN /*!50100 PARTITIONS*/
select xxxxxx,count(1) as total_count from xxxxxxx where xxxxxx >=1433952000 and xxxxxx < 1435248000 and xxxxxx=7 and xxxxxxx=0 group by
xxxxxx limit 5500 , 500\G
这其中内容太多,有些内容是我不需要的,想把正文内容输出为以下形式:
# Hostname: mysqldb
# Databases xxxxxxx
# Users xxxxxxxx
select xxxxxx,count(1) as total_count from xxxxxxx where xxxxxx >=1433952000 and xxxxxx < 1435248000 and xxxxxx=7 and xxxxxxx=0 group by
xxxxxx limit 5500 , 500\G
基本思路已经有了,就是在定义body的那一行对变量进行正则匹配多个字符串,输出多个字符串的所在行,但是不知道具体的匹配方法,请问各位大神如何才能达到需求? 匹配规则如下:
# Hostname所在行,#Databases所在行,#Users所在行,# EXPLAIN的下一行,脚本中定义body的相关代码如下:
payload=msg.get_payload()
body=extract_body(payload)
请问对body做何种处理才能满足我的需求呢? 谢谢!
|
|