免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
查看: 2762 | 回复: 1
打印 上一主题 下一主题

Using Stacks and Queues (Arithmetic expression evaluate) [复制链接]

论坛徽章:
0
跳转到指定楼层
1 [收藏(0)] [报告]
发表于 2004-12-14 06:45 |只看该作者 |倒序浏览
[code]
Validate test and pseudocode.

I. validate test
  
At the first, a table and some principles for ADT will be defined.


Token        State sign
PLUS, MULT, DIV        a
Operand        b
LPAR        c
RPAR        d
MINUS        e


1.        The arithmetic expression must start with operand, MINUS, or LPAR (b, e, and c).
2.        The arithmetic expression must finish with operand, or RPAR (b and d).
3.        Every successive two tokens must satisfy:
ab, ac, ba, bd, cb, da, be, ce, de, eb, ec, cc, dd.(e.g. ce mean LPAR and MINUS can be successive, ‘ba’ mean a operand and PLUS can border upon).
4.  The number of LPARs and RPARs must be same, that mean the number of c and d must be same.
5.  If a LPAR appear, a RPAR must appear after (That mean, if c appears, d must be after c).
If the expression is not valid an InvalidExpressionException is thrown and the whole process is terminated.
Now, there are four examples will show how the validate test works.

There is an arithmetic expression ( (7 * ( 23 – 105 / 15 ) )- 19 )
That is,

(        (        7        *        (        23        -        105        /        15        )        )        -        19        )
Now from the 1st element transfer the token to state number, and put them into a queue called Q

c        c        b        a        c        b        e        b        a        b        d        d        e        b        d

From Q, we can know that,
1. This expression starts with operand (state number is b).
2. This expression finishes with operand (state number is b).
3. Every successive two tokens are satisfied (cc, cb, ba, ac, cb, be, eb, ba, ab, bd, dd, de, eb and bd).
4. These are three LPARs and three RPARs. In other word, there is three c and three d.
5. LPAR is in front of RPAR. In other word, c is in front of d.
So this is a valid arithmetic expression.
There is an arithmetic expression  – 9 * ( 23 – 105 / 15 ) - ( - 15 + 1 )
That is,
-        9        *        (        23        -        105        /        15        )        -        (        -        15        +        1        )

Now from the 1st element transfer the token to state number, and put them into a queue called Q

e        b        a        c        b        e        b        a        b        d        e        c        e        b        a        b        d

From Q, we can know that,
1.        This expression starts with MINUS (state number is e).
2.        This expression finishes with RPAR (state number is d).
3.        Every successive two tokens are satisfied (eb, ba, ac, cb, be, eb, ba, ab, bd, de, ec, ce, eb, ba, ab, and bd).
4.        There are two LPARs and Two RPARs.
5.        LPARs always have a RPAR after themselves.
So this arithmetic expression is valid.

There is an arithmetic expression 7 * ( 23 – 105 / 15- ) 19
That is,

7        *        (        23        -        105        /        15        -        )        19

Now from the 1st element transfer the token to state number, and put them into a queue called Q

b        a        c        b        e        b        a        b        e        d        b

From Q, we can know that,
1.        This expression starts with operand (state number is b).
2.        This expression finishes with operand (state number is b).
3.        ed and db are not satisfied.
So, this arithmetic expression is not valid.

These is an arithmetic expression 9 * 7 ) + ( 8 – 5) * ( 6
That is,

9        *        7        )        +        (        8        -        5        )        *        (        6
Now from the 1st element transfer the token to state number, and put them into a queue called Q

b        a        b        d        a        c        b        e        b        d        a        c        b

From Q, we can know that,
1.        This expression starts with operand (state sign is b).
2.        This expression finishes with operand (state sign is b).
3.        Every successive two tokens are satisfied (ba, ab, bd, da, ac, cb, be, eb, bd, da, ac, cb).
4.        There are two LPARs and two RPARs. (Two e and two d).
5.        There is not RPAR after the second LPAR.
So this arithmetic expression is not valid.

        After validation, the result is below:
                ( (7 * ( 23 – 105 / 15 ) )– 19) ………………………....Valid
                – 9 * ( 23 – 105 / 15 ) - ( - 15 + 1 ) ...............................Valid
                7 * ( 23 – 105 / 15- ) 19 .............................................Invalid
9 * 7 ) + ( 8 – 5) * ( 6 .................................................Invalid

II. Validate test pseudocode

Algorithm validate_start_element(EL):
        Input: a state sign from Q
        Output: boolean value that indicates whether the EL is valid
        if EL<>;b  or  EL<>;e  or  EL<>;c then
                throw an InvalidExpressionException

Algorithm validate_finish_element(EL):
        Input: a state sign from Q
        Output: boolean value that indicates whether the EL is valid
        if EL<>;b  or   EL<>;d then
                throw an InvalidExpressionException

Algorithm validate_successive_two_elements(EL1, EL2):
        Input: successive two state signs EL1 and EL2 from Q
        Output: boolean value that indicates whether the EL is valid
        EL

论坛徽章:
0
2 [报告]
发表于 2004-12-14 06:47 |只看该作者

Using Stacks and Queues (Arithmetic expression evaluate)

有些表格无法正常显示,请见谅。
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP