免费注册 查看新帖 |

Chinaunix

  平台 论坛 博客 文库
最近访问板块 发新帖
楼主: compare2000
打印 上一主题 下一主题

DOS命令大全 [复制链接]

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
81 [报告]
发表于 2011-01-24 11:21 |只看该作者
本帖最后由 compare2000 于 2013-05-13 11:15 编辑

http://blog.chinaunix.net/uid-28813259-id-3679266.html
Oracle日常性能查看
判断回滚段竞争的SQL语句:(当Ratio大于2时存在回滚段竞争,需要增加更多的回滚段)
select rn.name, rs.GETS, rs.WAITS, (rs.WAITS / rs.GETS) * 100 ratio
from v$rollstat rs, v$rollname rn
where rs.USN = rn.usn

判断恢复日志竞争的SQL语句:(immediate_contention或wait_contention的值大于1时存在竞争)
select name,
(t.IMMEDIATE_MISSES /
decode((t.IMMEDIATE_GETS t.IMMEDIATE_MISSES),
0,
-1,
(t.IMMEDIATE_GETS t.IMMEDIATE_MISSES))) * 100 immediate_contention,
(t.MISSES / decode((t.GETS t.MISSES), 0, -1, (t.GETS t.MISSES))) * 100 wait_contention
from v$latch t
where name in ('redo copy', 'redo allocation')
判断表空间碎片:(如果最大空闲空间占总空间很大比例则可能不存在碎片,如果比例较小,且有许多空闲空间,则可能碎片很多)
select t.tablespace_name,
sum(t.bytes),
max(t.bytes),
count(*),
max(t.bytes) / sum(t.bytes) radio
from dba_free_space t
group by t.tablespace_name
order by t.tablespace_name
确定命中排序域的次数:
select t.NAME, t.VALUE from v$sysstat t where t.NAME like 'sort%'
查看当前SGA值:
select * from v$sga
确定高速缓冲区命中率:(如果命中率低于70%,则应该加大init.ora参数中的DB_BLOCK_BUFFER的值)
select 1 - sum(decode(name, 'physical reads', value, 0)) /
(sum(decode(name, 'db block gets', value, 0))
sum(decode(name, 'consistent gets', value, 0))) hit_ratio
from v$sysstat t
where name in ('physical reads', 'db block gets', 'consistent gets')
确定共享池中的命中率:(如果ratio1大于1时,需要加大共享池,如果ratio2大于10%时,需要加大共享池SHARED_POOL_SIZE)
select sum(pins) pins,
sum(reloads) reloads,
(sum(reloads) / sum(pins)) * 100 ratio1
from v$librarycache
select sum(gets) gets,
sum(getmisses) getmisses,
(sum(getmisses) / sum(gets)) * 100 ratio2
from v$rowcache
查询INIT.ORA参数:
select * from v$parameter
/////
Oracle性能参数查看(转)
0、数据库参数属性
col PROPERTY_NAME format a25
col PROPERTY_VALUE format a30
col DESCRIPTION format a100
select * from database_properties;
select * from v$version;
1、求当前会话的SID,SERIAL#
SELECT Sid, Serial# FROM V$session
WHERE Audsid = Sys_Context('USERENV', 'SESSIONID');
2、查询session的OS进程ID
SELECT p.Spid "OS Thread", b.NAME "Name-User", s.Program, s.Sid, s.Serial#,s.Osuser, s.Machine
FROM V$process p, V$session s, V$bgprocess b
WHERE p.Addr = s.Paddr
AND p.Addr = b.Paddr And (s.sid=&1 or p.spid=&1)
UNION ALL
SELECT p.Spid "OS Thread", s.Username "Name-User", s.Program, s.Sid,s.Serial#, s.Osuser, s.Machine
FROM V$process p, V$session s
WHERE p.Addr = s.Paddr
And (s.sid=&1 or p.spid=&1)
AND s.Username IS NOT NULL;
3、根据sid查看对应连接正在运行的sql
SELECT /* PUSH_SUBQ */ Command_Type, Sql_Text, Sharable_Mem, Persistent_Mem, Runtime_Mem, Sorts,
Version_Count, Loaded_Versions, Open_Versions, Users_Opening, Executions,
Users_Executing, Loads, First_Load_Time, Invalidations, Parse_Calls,
Disk_Reads, Buffer_Gets, Rows_Processed, SYSDATE Start_Time,
SYSDATE Finish_Time, '>' || Address Sql_Address, 'N' Status
FROM V$sqlarea WHERE Address = (SELECT Sql_Address
FROM V$session WHERE Sid = &sid );
4、查找object为哪些进程所用
SELECT p.Spid, s.Sid, s.Serial# Serial_Num, s.Username User_Name,
a.TYPE Object_Type, s.Osuser Os_User_Name, a.Owner,
a.OBJECT Object_Name,
Decode(Sign(48 - Command), 1, To_Char(Command), 'Action Code #' || To_Char(Command)) Action,
p.Program Oracle_Process, s.Terminal Terminal, s.Program Program,
s.Status Session_Status
FROM V$session s, V$access a, V$process p
WHERE s.Paddr = p.Addr
AND s.TYPE = 'USER'
AND a.Sid = s.Sid
AND a.OBJECT = '&obj'
ORDER BY s.Username, s.Osuser
5、查看有哪些用户连接
SELECT s.Osuser Os_User_Name,Decode(Sign(48 - Command),1,To_Char(Command),
'Action Code #' || To_Char(Command)) Action,
p.Program Oracle_Process, Status Session_Status, s.Terminal Terminal,
s.Program Program, s.Username User_Name,
s.Fixed_Table_Sequence Activity_Meter, '' Query, 0 Memory,
0 Max_Memory, 0 Cpu_Usage, s.Sid, s.Serial# Serial_Num
FROM V$session s, V$process p
WHERE s.Paddr = p.Addr
AND s.TYPE = 'USER'
ORDER BY s.Username, s.Osuser
6、根据v.sid查看对应连接的资源占用等情况
SELECT n.NAME, v.VALUE, n.CLASS, n.Statistic# FROM V$statname n, V$sesstat v
WHERE v.Sid = &sid
AND v.Statistic# = n.Statistic#
ORDER BY n.CLASS, n.Statistic#
7、查询耗资源的进程(top session)
SELECT s.Schemaname Schema_Name,Decode(Sign(48 - Command),
1, To_Char(Command), 'Action Code #' || To_Char(Command)) Action,Status Session_Status, s.Osuser Os_User_Name, s.Sid, p.Spid,s.Serial# Serial_Num, Nvl(s.Username, '[Oracle process]') User_Name,
s.Terminal Terminal, s.Program Program, St.VALUE Criteria_Value
FROM V$sesstat St, V$session s, V$process p
WHERE St.Sid = s.Sid
AND St.Statistic# = To_Number('38')
AND ('ALL' = 'ALL' OR s.Status = 'ALL')
AND p.Addr = s.Paddr
ORDER BY St.VALUE DESC, p.Spid ASC, s.Username ASC, s.Osuser ASC
8、查看锁(lock)情况
SELECT /* RULE */ Ls.Osuser Os_User_Name, Ls.Username User_Name,Decode(Ls.TYPE,
'RW', 'Row wait enqueue lock', 'TM', 'DML enqueue lock','TX', 'Transaction enqueue lock', 'UL', 'User supplied lock') Lock_Type,o.Object_Name OBJECT,Decode(Ls.Lmode,1, NULL, 2, 'Row Share', 3, 'Row Exclusive',
4, 'Share', 5, 'Share Row Exclusive', 6, 'Exclusive',NULL) Lock_Mode,o.Owner, Ls.Sid, Ls.Serial# Serial_Num, Ls.Id1, Ls.Id2 FROM Sys.Dba_Objects o,
(SELECT s.Osuser, s.Username, l.TYPE, l.Lmode, s.Sid, s.Serial#, l.Id1,l.Id2 FROM V$session s, V$lock l
WHERE s.Sid = l.Sid) Ls
WHERE o.Object_Id = Ls.Id1
AND o.Owner <> 'SYS'
ORDER BY o.Owner, o.Object_Name;
9、查看等待(wait)情况
SELECT Ws.CLASS, Ws.COUNT COUNT, SUM(Ss.VALUE) Sum_Value
FROM V$waitstat Ws, V$sysstat Ss
WHERE Ss.NAME IN ('db block gets', 'consistent gets')
GROUP BY Ws.CLASS, Ws.COUNT;
10、求process/session的状态
SELECT p.Pid, p.Spid, s.Program, s.Sid, s.Serial#
FROM V$process p, V$session s
WHERE s.Paddr = p.Addr;

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
82 [报告]
发表于 2011-01-24 11:23 |只看该作者
本帖最后由 compare2000 于 2013-05-13 11:16 编辑

11、求谁阻塞了某个session(10g)
SELECT Sid, Username, Event, Blocking_Session, Seconds_In_Wait, Wait_Time
FROM V$session
WHERE State IN ('WAITING')
AND Wait_Class != 'Idle';
12、查会话的阻塞
col user_name format a32
SELECT /* rule */ Lpad(' ', Decode(l.Xidusn, 0, 3, 0)) || l.Oracle_Username User_Name,
o.Owner, o.Object_Name, s.Sid, s.Serial#
FROM V$locked_Object l, Dba_Objects o, V$session s
WHERE l.Object_Id = o.Object_Id
AND l.Session_Id = s.Sid
ORDER BY o.Object_Id, Xidusn DESC;
col username format a15
col lock_level format a8
col owner format a18
col object_name format a32
SELECT /* rule */ s.Username,Decode(l.TYPE, 'tm', 'table lock', 'tx', 'row lock', NULL) Lock_Level,
o.Owner, o.Object_Name, s.Sid, s.Serial#
FROM V$session s, V$lock l, Dba_Objects o
WHERE l.Sid = s.Sid
AND l.Id1 = o.Object_Id( )
AND s.Username IS NOT NULL;
13、求等待的事件及会话信息/求会话的等待及会话信息
SELECT Se.Sid, s.Username, Se.Event, Se.Total_Waits, Se.Time_Waited,Se.Average_Wait
FROM V$session s, V$session_Event Se
WHERE s.Username IS NOT NULL
AND Se.Sid = s.Sid
AND s.Status = 'ACTIVE'
AND Se.Event NOT LIKE '%SQL*Net%'
ORDER BY s.Username;
SELECT s.Sid, s.Username, Sw.Event, Sw.Wait_Time, Sw.State,Sw.Seconds_In_Wait
FROM V$session s, V$session_Wait Sw
WHERE s.Username IS NOT NULL
AND Sw.Sid = s.Sid
AND Sw.Event NOT LIKE '%SQL*Net%'
ORDER BY s.Username;
14、求会话等待的file_id/block_id
col event format a24
col p1text format a12
col p2text format a12
col p3text format a12
SELECT Sid, Event, P1text, P1, P2text, P2, P3text, P3
FROM V$session_Wait
WHERE Event NOT LIKE '%SQL%'
AND Event NOT LIKE '%rdbms%'
AND Event NOT LIKE '%mon%'
ORDER BY Event;
SELECT NAME, Wait_Time
FROM V$latch l
WHERE EXISTS (SELECT 1
FROM (SELECT Sid, Event, P1text, P1, P2text, P2, P3text, P3
FROM V$session_Wait
WHERE Event NOT LIKE '%SQL%'
AND Event NOT LIKE '%rdbms%'
AND Event NOT LIKE '%mon%') x
WHERE x.P1 = l.Latch#);
15、求会话等待的对象
col owner format a18
col segment_name format a32
col segment_type format a32
SELECT Owner, Segment_Name, Segment_Type
FROM Dba_Extents
WHERE File_Id = &File_Id
AND &Block_Id BETWEEN Block_Id AND Block_Id Blocks - 1;
16、求出某个进程,并对它进行跟踪
SELECT s.Sid, s.Serial#
FROM V$session s, V$process p
WHERE s.Paddr = p.Addr
AND p.Spid = &1;
Exec Dbms_System.Set_Sql_Trace_In_Session(&1, &2, TRUE);
Exec Dbms_System.Set_Sql_Trace_In_Session(&1, &2, FALSE);
17、求当前session的跟踪文件
SELECT P1.VALUE || '/' || P2.VALUE || '_ora_' || p.Spid || '.ora' Filename
FROM V$process p, V$session s, V$parameter P1, V$parameter P2
WHERE P1.NAME = 'user_dump_dest'
AND P2.NAME = 'instance_name'
AND p.Addr = s.Paddr
AND s.Audsid = Userenv('SESSIONID')
AND p.Background IS NULL
AND Instr(p.Program, 'CJQ') = 0;
18、求出锁定的对象
SELECT Do.Object_Name, Session_Id, Process, Locked_Mode
FROM V$locked_Object Lo, Dba_Objects Do
WHERE Lo.Object_Id = Do.Object_Id;
19、DB_Cache建议
SELECT size_for_estimate, buffers_for_estimate, estd_physical_read_factor, estd_physical_reads
FROM V$DB_CACHE_ADVICE
WHERE name = 'DEFAULT'
AND block_size = (SELECT value FROM V$PARAMETER WHERE name = 'db_block_size')
AND advice_status = 'ON';
20、查看各项SGA相关参数:SGA,SGASTAT
select substr(name,1,10) name,substr(value,1,10) value
from v$parameter where name = 'log_buffer';
select * from v$sgastat ;
select * from v$sga;
show parameters area_size   #查看 各项区域内存参数, 其中sort_area为排序参数用;

各项视图建议参数值:V$DB_CACHE_ADVICE、V$SHARED_POOL_ADVICE),关于PGA
也有相关视图V$PGA_TARGET_ADVICE 等。
21、内存使用锁定在物理内存:
AIX 5L(AIX 4.3.3 以上)
logon aix as root
cd /usr/samples/kernel
./vmtune (信息如下) v_pingshm已经是1
./vmtune -S 1
然后oracle用户修改initSID.ora 中 lock_sga = true
重新启动数据库
HP UNIX
Root身份登陆
Create the file "/etc/privgroup": vi /etc/privgroup
Add line "dba MLOCK" to file
As root, run the command "/etc/setprivgrp -f /etc/privgroup":
$/etc/setprivgrp -f /etc/privgroup
oracle用户修改initSID.ora中lock_sga=true
重新启动数据库
SOLARIS (solaris2.6以上)
8i版本以上数据库默认使用隐藏参数 use_ism = true ,自动锁定SGA于内存中,不用设置
lock_sga, 如果设置 lock_sga =true 使用非 root 用户启动数据库将返回错误。
WINDOWS (作用不大)
不能设置lock_sga=true,可以通过设置pre_page_sga=true,使得数据库启动的时候就把所有内
存页装载,这样可能起到一定的作用。
22、内存参数调整
数据缓冲区命中率
select value from v$sysstat where name ='physical reads';
select value from v$sysstat where name ='physical reads direct';
select value from v$sysstat where name ='physical reads direct (lob)';
select value from v$sysstat where name ='consistent gets';
select value from v$sysstat where name = 'db block gets';
这里命中率的计算应该是
令 x = physical reads direct physical reads direct (lob)
命中率 =100 - ( physical reads - x) / (consistent gets db block gets - x)*100
通常如果发现命中率低于90%,则应该调整应用可可以考虑是否增大数据缓冲区;
共享池的命中率
select sum(pinhits)/sum(pins)*100 "hit radio" from v$librarycache;
假如共享池的命中率低于95%,就要考虑调整应用(通常是没使用bind var )或者增加内存;
关于排序部分
select name,value from v$sysstat where name like '%sort%';
假如我们发现sorts (disk)/ (sorts (memory) sorts (disk))的比例过高,则通常意味着
sort_area_size 部分内存较小,可考虑调整相应的参数。
关于log_buffer
select name,value from v$sysstat
where name in('redo entries','redo buffer allocation retries');
假如 redo buffer allocation retries/ redo entries 的比例超过1%我们就可以考虑增大log_buffer

/////
July 28
oracle 常用SQL查询,望对大家有所启示
1、查看表空间的名称及大小
select t.tablespace_name, round(sum(bytes/(1024*1024)),0) ts_size
from dba_tablespaces t, dba_data_files d
where t.tablespace_name = d.tablespace_name
group by t.tablespace_name;
2、查看表空间物理文件的名称及大小
select tablespace_name, file_id, file_name,
round(bytes/(1024*1024),0) total_space
from dba_data_files
order by tablespace_name;
3、查看回滚段名称及大小
select segment_name, tablespace_name, r.status,
(initial_extent/1024) InitialExtent,(next_extent/1024) NextExtent,
max_extents, v.curext CurExtent
From dba_rollback_segs r, v$rollstat v
Where r.segment_id = v.usn( )
order by segment_name ;
4、查看控制文件
select name from v$controlfile;
5、查看日志文件
select member from v$logfile;
6、查看表空间的使用情况
select sum(bytes)/(1024*1024) as free_space,tablespace_name
from dba_free_space
group by tablespace_name;
SELECT A.TABLESPACE_NAME,A.BYTES TOTAL,B.BYTES USED, C.BYTES FREE,
(B.BYTES*100)/A.BYTES "% USED",(C.BYTES*100)/A.BYTES "% FREE"
FROM SYS.SM$TS_AVAIL A,SYS.SM$TS_USED B,SYS.SM$TS_FREE C
WHERE A.TABLESPACE_NAME=B.TABLESPACE_NAME AND A.TABLESPACE_NAME=C.TABLESPACE_NAME;
7、查看数据库库对象
select owner, object_type, status, count(*) count# from all_objects group by owner, object_type, status;
8、查看数据库的版本 
Select version FROM Product_component_version
Where SUBSTR(PRODUCT,1,6)='Oracle';
9、查看数据库的创建日期和归档方式
Select Created, Log_Mode, Log_Mode From V$Database;
10、捕捉运行很久的SQL
column username format a12
column opname format a16
column progress format a8
select username,sid,opname,
round(sofar*100 / totalwork,0) || '%' as progress,
time_remaining,sql_text
from v$session_longops , v$sql
where time_remaining <> 0
and sql_address = address
and sql_hash_value = hash_value
/
11。查看数据表的参数信息
SELECT partition_name, high_value, high_value_length, tablespace_name,
pct_free, pct_used, ini_trans, max_trans, initial_extent,
next_extent, min_extent, max_extent, pct_increase, FREELISTS,
freelist_groups, LOGGING, BUFFER_POOL, num_rows, blocks,
empty_blocks, avg_space, chain_cnt, avg_row_len, sample_size,
last_analyzed
FROM dba_tab_partitions
--WHERE table_name = :tname AND table_owner = :towner
ORDER BY partition_position
12.查看还没提交的事务
select * from v$locked_object;
select * from v$transaction;
13。查找object为哪些进程所用
select
p.spid,
s.sid,
s.serial# serial_num,
s.username user_name,
a.type object_type,
s.osuser os_user_name,
a.owner,
a.object object_name,
decode(sign(48 - command),
1,
to_char(command), 'Action Code #' || to_char(command) ) action,
p.program oracle_process,
s.terminal terminal,
s.program program,
s.status session_status
from v$session s, v$access a, v$process p
where s.paddr = p.addr and
s.type = 'USER' and
a.sid = s.sid and
a.object='SUBSCRIBER_ATTR'
order by s.username, s.osuser
14。回滚段查看
select rownum, sys.dba_rollback_segs.segment_name Name, v$rollstat.extents
Extents, v$rollstat.rssize Size_in_Bytes, v$rollstat.xacts XActs,
v$rollstat.gets Gets, v$rollstat.waits Waits, v$rollstat.writes Writes,
sys.dba_rollback_segs.status status from v$rollstat, sys.dba_rollback_segs,
v$rollname where v$rollname.name( ) = sys.dba_rollback_segs.segment_name and
v$rollstat.usn ( ) = v$rollname.usn order by rownum
15。耗资源的进程(top session)
select s.schemaname schema_name, decode(sign(48 - command), 1,
to_char(command), 'Action Code #' || to_char(command) ) action, status
session_status, s.osuser os_user_name, s.sid, p.spid , s.serial# serial_num,
nvl(s.username, '[Oracle process]') user_name, s.terminal terminal,
s.program program, st.value criteria_value from v$sesstat st, v$session s , v$process p
where st.sid = s.sid and st.statistic# = to_number('38') and ('ALL' = 'ALL'
or s.status = 'ALL') and p.addr = s.paddr order by st.value desc, p.spid asc, s.username asc, s.osuser asc
16。查看锁(lock)情况
select /* RULE */ ls.osuser os_user_name, ls.username user_name,
decode(ls.type, 'RW', 'Row wait enqueue lock', 'TM', 'DML enqueue lock', 'TX',
'Transaction enqueue lock', 'UL', 'User supplied lock') lock_type,
o.object_name object, decode(ls.lmode, 1, null, 2, 'Row Share', 3,
'Row Exclusive', 4, 'Share', 5, 'Share Row Exclusive', 6, 'Exclusive', null)
lock_mode, o.owner, ls.sid, ls.serial# serial_num, ls.id1, ls.id2
from sys.dba_objects o, ( select s.osuser, s.username, l.type,
l.lmode, s.sid, s.serial#, l.id1, l.id2 from v$session s,
v$lock l where s.sid = l.sid ) ls where o.object_id = ls.id1 and o.owner
<> 'SYS' order by o.owner, o.object_name
17。查看等待(wait)情况
SELECT v$waitstat.class, v$waitstat.count count, SUM(v$sysstat.value) sum_value
FROM v$waitstat, v$sysstat WHERE v$sysstat.name IN ('db block gets',
'consistent gets') group by v$waitstat.class, v$waitstat.count
18。查看sga情况
SELECT NAME, BYTES FROM SYS.V_$SGASTAT ORDER BY NAME ASC
19。查看catched object
SELECT owner, name, db_link, namespace,
type, sharable_mem, loads, executions,
locks, pins, kept FROM v$db_object_cache
20。查看V$SQLAREA
SELECT SQL_TEXT, SHARABLE_MEM, PERSISTENT_MEM, RUNTIME_MEM, SORTS,
VERSION_COUNT, LOADED_VERSIONS, OPEN_VERSIONS, USERS_OPENING, EXECUTIONS,
USERS_EXECUTING, LOADS, FIRST_LOAD_TIME, INVALIDATIONS, PARSE_CALLS, DISK_READS,
BUFFER_GETS, ROWS_PROCESSED FROM V$SQLAREA
21。查看object分类数量
select decode (o.type#,1,'INDEX' , 2,'TABLE' , 3 , 'CLUSTER' , 4, 'VIEW' , 5 ,
'SYNONYM' , 6 , 'SEQUENCE' , 'OTHER' ) object_type , count(*) quantity from
sys.obj$ o where o.type# > 1 group by decode (o.type#,1,'INDEX' , 2,'TABLE' , 3
, 'CLUSTER' , 4, 'VIEW' , 5 , 'SYNONYM' , 6 , 'SEQUENCE' , 'OTHER' ) union select
'COLUMN' , count(*) from sys.col$ union select 'DB LINK' , count(*) from
22。按用户查看object种类
select u.name schema, sum(decode(o.type#, 1, 1, NULL)) indexes,
sum(decode(o.type#, 2, 1, NULL)) tables, sum(decode(o.type#, 3, 1, NULL))
clusters, sum(decode(o.type#, 4, 1, NULL)) views, sum(decode(o.type#, 5, 1,
NULL)) synonyms, sum(decode(o.type#, 6, 1, NULL)) sequences,
sum(decode(o.type#, 1, NULL, 2, NULL, 3, NULL, 4, NULL, 5, NULL, 6, NULL, 1))
others from sys.obj$ o, sys.user$ u where o.type# >= 1 and u.user# =
o.owner# and u.name <> 'PUBLIC' group by u.name order by
sys.link$ union select 'CONSTRAINT' , count(*) from sys.con$
23。有关connection的相关信息
1)查看有哪些用户连接
select s.osuser os_user_name, decode(sign(48 - command), 1, to_char(command),
'Action Code #' || to_char(command) ) action, p.program oracle_process,
status session_status, s.terminal terminal, s.program program,
s.username user_name, s.fixed_table_sequence activity_meter, '' query,
0 memory, 0 max_memory, 0 cpu_usage, s.sid, s.serial# serial_num
from v$session s, v$process p where s.paddr=p.addr and s.type = 'USER'
order by s.username, s.osuser
2)根据v.sid查看对应连接的资源占用等情况
select n.name,
v.value,
n.class,
n.statistic#
from v$statname n,
v$sesstat v
where v.sid = 71 and
v.statistic# = n.statistic#
order by n.class, n.statistic#
3)根据sid查看对应连接正在运行的sql
select /* PUSH_SUBQ */
command_type,
sql_text,
sharable_mem,
persistent_mem,
runtime_mem,
sorts,
version_count,
loaded_versions,
open_versions,
users_opening,
executions,
users_executing,
loads,
first_load_time,
invalidations,
parse_calls,
disk_reads,
buffer_gets,
rows_processed,
sysdate start_time,
sysdate finish_time,
'>' || address sql_address,
'N' status
from v$sqlarea
where address = (select sql_address from v$session where sid = 71)
24.查询表空间使用情况select a.tablespace_name "表空间名称",
100-round((nvl(b.bytes_free,0)/a.bytes_alloc)*100,2) "占用率(%)",
round(a.bytes_alloc/1024/1024,2) "容量(M)",
round(nvl(b.bytes_free,0)/1024/1024,2) "空闲(M)",
round((a.bytes_alloc-nvl(b.bytes_free,0))/1024/1024,2) "使用(M)",
Largest "最大扩展段(M)",
to_char(sysdate,'yyyy-mm-dd hh24:mi:ss') "采样时间"
from (select f.tablespace_name,
sum(f.bytes) bytes_alloc,
sum(decode(f.autoextensible,'YES',f.maxbytes,'NO',f.bytes)) maxbytes
from dba_data_files f
group by tablespace_name) a,
(select f.tablespace_name,
sum(f.bytes) bytes_free
from dba_free_space f
group by tablespace_name) b,
(select round(max(ff.length)*16/1024,2) Largest,
ts.name tablespace_name
from sys.fet$ ff, sys.file$ tf,sys.ts$ ts
where ts.ts#=ff.ts# and ff.file#=tf.relfile# and ts.ts#=tf.ts#
group by ts.name, tf.blocks) c
where a.tablespace_name = b.tablespace_name and a.tablespace_name = c.tablespace_name
25. 查询表空间的碎片程度
select tablespace_name,count(tablespace_name) from dba_free_space group by tablespace_name
having count(tablespace_name)>10;
alter tablespace name coalesce;
alter table name deallocate unused;
create or replace view ts_blocks_v as
select tablespace_name,block_id,bytes,blocks,'free space' segment_name from dba_free_space
union all
select tablespace_name,block_id,bytes,blocks,segment_name from dba_extents;
select * from ts_blocks_v;
select tablespace_name,sum(bytes),max(bytes),count(block_id) from dba_free_space
group by tablespace_name;
26.查看有哪些实例在运行:
select * from v$active_instances;
12:15 PM | Add a comment | Permalink | Blog it | Oracle
ORACLE性能调优原则
数据库的硬件配置:CPU、内存、网络条件
1.         CPU:在任何机器中CPU的数据处理能力往往是衡量计算机性能的一个标志,并且ORACLE是一个提供并行能力的数据库系统,在CPU方面的要求就更高了,如果运行队列数目超过了CPU处理的数目,性能就会下降,我们要解决的问题就是要适当增加CPU的数量了,当然我们还可以将需要许多资源的进程KILL掉;
2.         内存:衡量机器性能的另外一个指标就是内存的多少了,在ORACLE中内存和我们在建数据库中的交换区进行数据的交换,读数据时,磁盘I/O必须等待物

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
83 [报告]
发表于 2011-01-24 11:26 |只看该作者
本帖最后由 compare2000 于 2014-03-18 10:47 编辑

call setenv_real.bat

pushd %publishdir%\lltResult
if exist *.html (del *.html)
if exist *.txt (del *.txt)

pushd %localdir%\cap\test\ar_fwd_ut\debug
if exist *.exe (del *.exe)
if exist *.html (del *.html)
if exist *.txt (del *.txt)
if exist *.pdb (del *.pdb)
if exist *.ilk (del *.ilk)

::call "C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe"
::cd %localdir%\VFP\test\ar_fwd_ut

set ms_home=C:\WINDOWS
set ms_exe=%ms_home%\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe
%ms_exe% "%localdir%\cap\test\ar_fwd_ut\ar_fwd_ut.sln" /t:Rebuild  1>rebuildRslt.txt
::msbuild "%localdir%\cap\test\ar_fwd_ut\ar_fwd_ut.sln" /t:Rebuild  1>rebuildRslt.txt

goto yes

:yes
set errorlevel=0
pause
exit %errorlevel%

:no
set errorlevel=1
pause
exit %errorlevel%

call setenv_real.bat

pushd %publishdir%\lltResult
find /c "Failure" test_suit_result.html

if errorlevel 1 goto yes
goto no

:yes
set errorlevel=0
pause
exit %errorlevel%

:no
set errorlevel=1
pause
exit %errorlevel%

系统
# uname -a # 查看内核/操作系统/CPU信息
# head -n 1 /etc/issue # 查看操作系统版本
# cat /proc/cpuinfo # 查看CPU信息
# hostname # 查看计算机名
# lspci -tv # 列出所有PCI设备
# lsusb -tv # 列出所有USB设备
# lsmod # 列出加载的内核模块
# env # 查看环境变量
资源
# free -m # 查看内存使用量和交换区使用量
# df -h # 查看各分区使用情况
# du -sh # 查看指定目录的大小
# grep MemTotal /proc/meminfo # 查看内存总量
# grep MemFree /proc/meminfo # 查看空闲内存量
# uptime # 查看系统运行时间、用户数、负载
# cat /proc/loadavg # 查看系统负载
磁盘和分区
# mount | column -t # 查看挂接的分区状态
# fdisk -l # 查看所有分区
# swapon -s # 查看所有交换分区
# hdparm -i /dev/hda # 查看磁盘参数(仅适用于IDE设备)
# dmesg | grep IDE # 查看启动时IDE设备检测状况
网络
# ifconfig # 查看所有网络接口的属性
# iptables -L # 查看防火墙设置
# route -n # 查看路由表
# netstat -lntp # 查看所有监听端口
# netstat -antp # 查看所有已经建立的连接
# netstat -s # 查看网络统计信息
进程
# ps -ef # 查看所有进程
# top # 实时显示进程状态
用户
# w # 查看活动用户
# id # 查看指定用户信息
# last # 查看用户登录日志
# cut -d: -f1 /etc/passwd # 查看系统所有用户
# cut -d: -f1 /etc/group # 查看系统所有组
# crontab -l # 查看当前用户的计划任务
服务
# chkconfig --list # 列出所有系统服务
# chkconfig --list | grep on # 列出所有启动的系统服务
程序
# rpm -qa # 查看所有安装的软件包

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
84 [报告]
发表于 2011-01-24 11:26 |只看该作者
本帖最后由 compare2000 于 2013-05-13 11:21 编辑

Oracle日常性能查看
判断回滚段竞争的SQL语句:(当Ratio大于2时存在回滚段竞争,需要增加更多的回滚段)
select rn.name, rs.GETS, rs.WAITS, (rs.WAITS / rs.GETS) * 100 ratio
from v$rollstat rs, v$rollname rn
where rs.USN = rn.usn

判断恢复日志竞争的SQL语句:(immediate_contention或wait_contention的值大于1时存在竞争)
select name,
(t.IMMEDIATE_MISSES /
decode((t.IMMEDIATE_GETS + t.IMMEDIATE_MISSES),
0,
-1,
(t.IMMEDIATE_GETS + t.IMMEDIATE_MISSES))) * 100 immediate_contention,
(t.MISSES / decode((t.GETS + t.MISSES), 0, -1, (t.GETS + t.MISSES))) * 100 wait_contention
from v$latch t
where name in ('redo copy', 'redo allocation')
判断表空间碎片:(如果最大空闲空间占总空间很大比例则可能不存在碎片,如果比例较小,且有许多空闲空间,则可能碎片很多)
select t.tablespace_name,
sum(t.bytes),
max(t.bytes),
count(*),
max(t.bytes) / sum(t.bytes) radio
from dba_free_space t
group by t.tablespace_name
order by t.tablespace_name
确定命中排序域的次数:
select t.NAME, t.VALUE from v$sysstat t where t.NAME like 'sort%'
查看当前SGA值:
select * from v$sga
确定高速缓冲区命中率:(如果命中率低于70%,则应该加大init.ora参数中的DB_BLOCK_BUFFER的值)
select 1 - sum(decode(name, 'physical reads', value, 0)) /
(sum(decode(name, 'db block gets', value, 0)) +
sum(decode(name, 'consistent gets', value, 0))) hit_ratio
from v$sysstat t
where name in ('physical reads', 'db block gets', 'consistent gets')
确定共享池中的命中率:(如果ratio1大于1时,需要加大共享池,如果ratio2大于10%时,需要加大共享池SHARED_POOL_SIZE)
select sum(pins) pins,
sum(reloads) reloads,
(sum(reloads) / sum(pins)) * 100 ratio1
from v$librarycache
select sum(gets) gets,
sum(getmisses) getmisses,
(sum(getmisses) / sum(gets)) * 100 ratio2
from v$rowcache
查询INIT.ORA参数:
select * from v$parameter
/////
Oracle性能参数查看(转)
0、数据库参数属性
col PROPERTY_NAME format a25
col PROPERTY_VALUE format a30
col DESCRIPTION format a100
select * from database_properties;
select * from v$version;
1、求当前会话的SID,SERIAL#
SELECT Sid, Serial# FROM V$session
WHERE Audsid = Sys_Context('USERENV', 'SESSIONID');
2、查询session的OS进程ID
SELECT p.Spid "OS Thread", b.NAME "Name-User", s.Program, s.Sid, s.Serial#,s.Osuser, s.Machine
FROM V$process p, V$session s, V$bgprocess b
WHERE p.Addr = s.Paddr
AND p.Addr = b.Paddr And (s.sid=&1 or p.spid=&1)
UNION ALL
SELECT p.Spid "OS Thread", s.Username "Name-User", s.Program, s.Sid,s.Serial#, s.Osuser, s.Machine
FROM V$process p, V$session s
WHERE p.Addr = s.Paddr
And (s.sid=&1 or p.spid=&1)
AND s.Username IS NOT NULL;
3、根据sid查看对应连接正在运行的sql
SELECT /*+ PUSH_SUBQ */ Command_Type, Sql_Text, Sharable_Mem, Persistent_Mem, Runtime_Mem, Sorts,
Version_Count, Loaded_Versions, Open_Versions, Users_Opening, Executions,
Users_Executing, Loads, First_Load_Time, Invalidations, Parse_Calls,
Disk_Reads, Buffer_Gets, Rows_Processed, SYSDATE Start_Time,
SYSDATE Finish_Time, '>' || Address Sql_Address, 'N' Status
FROM V$sqlarea WHERE Address = (SELECT Sql_Address
FROM V$session WHERE Sid = &sid );
4、查找object为哪些进程所用
SELECT p.Spid, s.Sid, s.Serial# Serial_Num, s.Username User_Name,
a.TYPE Object_Type, s.Osuser Os_User_Name, a.Owner,
a.OBJECT Object_Name,
Decode(Sign(48 - Command), 1, To_Char(Command), 'Action Code #' || To_Char(Command)) Action,
p.Program Oracle_Process, s.Terminal Terminal, s.Program Program,
s.Status Session_Status
FROM V$session s, V$access a, V$process p
WHERE s.Paddr = p.Addr
AND s.TYPE = 'USER'
AND a.Sid = s.Sid
AND a.OBJECT = '&obj'
ORDER BY s.Username, s.Osuser
5、查看有哪些用户连接
SELECT s.Osuser Os_User_Name,Decode(Sign(48 - Command),1,To_Char(Command),
'Action Code #' || To_Char(Command)) Action,
p.Program Oracle_Process, Status Session_Status, s.Terminal Terminal,
s.Program Program, s.Username User_Name,
s.Fixed_Table_Sequence Activity_Meter, '' Query, 0 Memory,
0 Max_Memory, 0 Cpu_Usage, s.Sid, s.Serial# Serial_Num
FROM V$session s, V$process p
WHERE s.Paddr = p.Addr
AND s.TYPE = 'USER'
ORDER BY s.Username, s.Osuser
6、根据v.sid查看对应连接的资源占用等情况
SELECT n.NAME, v.VALUE, n.CLASS, n.Statistic# FROM V$statname n, V$sesstat v
WHERE v.Sid = &sid
AND v.Statistic# = n.Statistic#
ORDER BY n.CLASS, n.Statistic#
7、查询耗资源的进程(top session)
SELECT s.Schemaname Schema_Name,Decode(Sign(48 - Command),
1, To_Char(Command), 'Action Code #' || To_Char(Command)) Action,Status Session_Status, s.Osuser Os_User_Name, s.Sid, p.Spid,s.Serial# Serial_Num, Nvl(s.Username, '[Oracle process]') User_Name,
s.Terminal Terminal, s.Program Program, St.VALUE Criteria_Value
FROM V$sesstat St, V$session s, V$process p
WHERE St.Sid = s.Sid
AND St.Statistic# = To_Number('38')
AND ('ALL' = 'ALL' OR s.Status = 'ALL')
AND p.Addr = s.Paddr
ORDER BY St.VALUE DESC, p.Spid ASC, s.Username ASC, s.Osuser ASC
8、查看锁(lock)情况
SELECT /*+ RULE */ Ls.Osuser Os_User_Name, Ls.Username User_Name,Decode(Ls.TYPE,
'RW', 'Row wait enqueue lock', 'TM', 'DML enqueue lock','TX', 'Transaction enqueue lock', 'UL', 'User supplied lock') Lock_Type,o.Object_Name OBJECT,Decode(Ls.Lmode,1, NULL, 2, 'Row Share', 3, 'Row Exclusive',
4, 'Share', 5, 'Share Row Exclusive', 6, 'Exclusive',NULL) Lock_Mode,o.Owner, Ls.Sid, Ls.Serial# Serial_Num, Ls.Id1, Ls.Id2 FROM Sys.Dba_Objects o,
(SELECT s.Osuser, s.Username, l.TYPE, l.Lmode, s.Sid, s.Serial#, l.Id1,l.Id2 FROM V$session s, V$lock l
WHERE s.Sid = l.Sid) Ls
WHERE o.Object_Id = Ls.Id1
AND o.Owner <> 'SYS'
ORDER BY o.Owner, o.Object_Name;
9、查看等待(wait)情况
SELECT Ws.CLASS, Ws.COUNT COUNT, SUM(Ss.VALUE) Sum_Value
FROM V$waitstat Ws, V$sysstat Ss
WHERE Ss.NAME IN ('db block gets', 'consistent gets')
GROUP BY Ws.CLASS, Ws.COUNT;
10、求process/session的状态
SELECT p.Pid, p.Spid, s.Program, s.Sid, s.Serial#
FROM V$process p, V$session s
WHERE s.Paddr = p.Addr;
11、求谁阻塞了某个session(10g)
SELECT Sid, Username, Event, Blocking_Session, Seconds_In_Wait, Wait_Time
FROM V$session
WHERE State IN ('WAITING')
AND Wait_Class != 'Idle';
12、查会话的阻塞
col user_name format a32
SELECT /*+ rule */ Lpad(' ', Decode(l.Xidusn, 0, 3, 0)) || l.Oracle_Username User_Name,
o.Owner, o.Object_Name, s.Sid, s.Serial#
FROM V$locked_Object l, Dba_Objects o, V$session s
WHERE l.Object_Id = o.Object_Id
AND l.Session_Id = s.Sid
ORDER BY o.Object_Id, Xidusn DESC;
col username format a15
col lock_level format a8
col owner format a18
col object_name format a32
SELECT /*+ rule */ s.Username,Decode(l.TYPE, 'tm', 'table lock', 'tx', 'row lock', NULL) Lock_Level,
o.Owner, o.Object_Name, s.Sid, s.Serial#
FROM V$session s, V$lock l, Dba_Objects o
WHERE l.Sid = s.Sid
AND l.Id1 = o.Object_Id(+)
AND s.Username IS NOT NULL;
13、求等待的事件及会话信息/求会话的等待及会话信息
SELECT Se.Sid, s.Username, Se.Event, Se.Total_Waits, Se.Time_Waited,Se.Average_Wait
FROM V$session s, V$session_Event Se
WHERE s.Username IS NOT NULL
AND Se.Sid = s.Sid
AND s.Status = 'ACTIVE'
AND Se.Event NOT LIKE '%SQL*Net%'
ORDER BY s.Username;
SELECT s.Sid, s.Username, Sw.Event, Sw.Wait_Time, Sw.State,Sw.Seconds_In_Wait
FROM V$session s, V$session_Wait Sw
WHERE s.Username IS NOT NULL
AND Sw.Sid = s.Sid
AND Sw.Event NOT LIKE '%SQL*Net%'
ORDER BY s.Username;
14、求会话等待的file_id/block_id
col event format a24
col p1text format a12
col p2text format a12
col p3text format a12
SELECT Sid, Event, P1text, P1, P2text, P2, P3text, P3
FROM V$session_Wait
WHERE Event NOT LIKE '%SQL%'
AND Event NOT LIKE '%rdbms%'
AND Event NOT LIKE '%mon%'
ORDER BY Event;
SELECT NAME, Wait_Time
FROM V$latch l
WHERE EXISTS (SELECT 1
FROM (SELECT Sid, Event, P1text, P1, P2text, P2, P3text, P3
FROM V$session_Wait
WHERE Event NOT LIKE '%SQL%'
AND Event NOT LIKE '%rdbms%'
AND Event NOT LIKE '%mon%') x
WHERE x.P1 = l.Latch#);
15、求会话等待的对象
col owner format a18
col segment_name format a32
col segment_type format a32
SELECT Owner, Segment_Name, Segment_Type
FROM Dba_Extents
WHERE File_Id = &File_Id
AND &Block_Id BETWEEN Block_Id AND Block_Id + Blocks - 1;
16、求出某个进程,并对它进行跟踪
SELECT s.Sid, s.Serial#
FROM V$session s, V$process p
WHERE s.Paddr = p.Addr
AND p.Spid = &1;
Exec Dbms_System.Set_Sql_Trace_In_Session(&1, &2, TRUE);
Exec Dbms_System.Set_Sql_Trace_In_Session(&1, &2, FALSE);
17、求当前session的跟踪文件
SELECT P1.VALUE || '/' || P2.VALUE || '_ora_' || p.Spid || '.ora' Filename
FROM V$process p, V$session s, V$parameter P1, V$parameter P2
WHERE P1.NAME = 'user_dump_dest'
AND P2.NAME = 'instance_name'
AND p.Addr = s.Paddr
AND s.Audsid = Userenv('SESSIONID')
AND p.Background IS NULL
AND Instr(p.Program, 'CJQ') = 0;
18、求出锁定的对象
SELECT Do.Object_Name, Session_Id, Process, Locked_Mode
FROM V$locked_Object Lo, Dba_Objects Do
WHERE Lo.Object_Id = Do.Object_Id;
19、DB_Cache建议
SELECT size_for_estimate, buffers_for_estimate, estd_physical_read_factor, estd_physical_reads
FROM V$DB_CACHE_ADVICE
WHERE name = 'DEFAULT'
AND block_size = (SELECT value FROM V$PARAMETER WHERE name = 'db_block_size')
AND advice_status = 'ON';
20、查看各项SGA相关参数:SGA,SGASTAT
select substr(name,1,10) name,substr(value,1,10) value
from v$parameter where name = 'log_buffer';
select * from v$sgastat ;
select * from v$sga;
show parameters area_size   #查看 各项区域内存参数, 其中sort_area为排序参数用;

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
85 [报告]
发表于 2011-01-24 11:30 |只看该作者
本帖最后由 compare2000 于 2013-05-13 11:21 编辑

各项视图建议参数值:V$DB_CACHE_ADVICE、V$SHARED_POOL_ADVICE),关于PGA
也有相关视图V$PGA_TARGET_ADVICE 等。
21、内存使用锁定在物理内存:
AIX 5L(AIX 4.3.3 以上)
logon aix as root
cd /usr/samples/kernel
./vmtune (信息如下) v_pingshm已经是1
./vmtune -S 1
然后oracle用户修改initSID.ora 中 lock_sga = true
重新启动数据库
HP UNIX
Root身份登陆
Create the file "/etc/privgroup": vi /etc/privgroup
Add line "dba MLOCK" to file
As root, run the command "/etc/setprivgrp -f /etc/privgroup":
$/etc/setprivgrp -f /etc/privgroup
oracle用户修改initSID.ora中lock_sga=true
重新启动数据库
SOLARIS (solaris2.6以上)
8i版本以上数据库默认使用隐藏参数 use_ism = true ,自动锁定SGA于内存中,不用设置
lock_sga, 如果设置 lock_sga =true 使用非 root 用户启动数据库将返回错误。
WINDOWS (作用不大)
不能设置lock_sga=true,可以通过设置pre_page_sga=true,使得数据库启动的时候就把所有内
存页装载,这样可能起到一定的作用。
22、内存参数调整
数据缓冲区命中率
select value from v$sysstat where name ='physical reads';
select value from v$sysstat where name ='physical reads direct';
select value from v$sysstat where name ='physical reads direct (lob)';
select value from v$sysstat where name ='consistent gets';
select value from v$sysstat where name = 'db block gets';
这里命中率的计算应该是
令 x = physical reads direct + physical reads direct (lob)
命中率 =100 - ( physical reads - x) / (consistent gets + db block gets - x)*100
通常如果发现命中率低于90%,则应该调整应用可可以考虑是否增大数据缓冲区;
共享池的命中率
select sum(pinhits)/sum(pins)*100 "hit radio" from v$librarycache;
假如共享池的命中率低于95%,就要考虑调整应用(通常是没使用bind var )或者增加内存;
关于排序部分
select name,value from v$sysstat where name like '%sort%';
假如我们发现sorts (disk)/ (sorts (memory)+ sorts (disk))的比例过高,则通常意味着
sort_area_size 部分内存较小,可考虑调整相应的参数。
关于log_buffer
select name,value from v$sysstat
where name in('redo entries','redo buffer allocation retries');
假如 redo buffer allocation retries/ redo entries 的比例超过1%我们就可以考虑增大log_buffer

/////
July 28
oracle 常用SQL查询,望对大家有所启示
1、查看表空间的名称及大小
select t.tablespace_name, round(sum(bytes/(1024*1024)),0) ts_size
from dba_tablespaces t, dba_data_files d
where t.tablespace_name = d.tablespace_name
group by t.tablespace_name;
2、查看表空间物理文件的名称及大小
select tablespace_name, file_id, file_name,
round(bytes/(1024*1024),0) total_space
from dba_data_files
order by tablespace_name;
3、查看回滚段名称及大小
select segment_name, tablespace_name, r.status,
(initial_extent/1024) InitialExtent,(next_extent/1024) NextExtent,
max_extents, v.curext CurExtent
From dba_rollback_segs r, v$rollstat v
Where r.segment_id = v.usn(+)
order by segment_name ;
4、查看控制文件
select name from v$controlfile;
5、查看日志文件
select member from v$logfile;
6、查看表空间的使用情况
select sum(bytes)/(1024*1024) as free_space,tablespace_name
from dba_free_space
group by tablespace_name;
SELECT A.TABLESPACE_NAME,A.BYTES TOTAL,B.BYTES USED, C.BYTES FREE,
(B.BYTES*100)/A.BYTES "% USED",(C.BYTES*100)/A.BYTES "% FREE"
FROM SYS.SM$TS_AVAIL A,SYS.SM$TS_USED B,SYS.SM$TS_FREE C
WHERE A.TABLESPACE_NAME=B.TABLESPACE_NAME AND A.TABLESPACE_NAME=C.TABLESPACE_NAME;
7、查看数据库库对象
select owner, object_type, status, count(*) count# from all_objects group by owner, object_type, status;
8、查看数据库的版本 
Select version FROM Product_component_version
Where SUBSTR(PRODUCT,1,6)='Oracle';
9、查看数据库的创建日期和归档方式
Select Created, Log_Mode, Log_Mode From V$Database;
10、捕捉运行很久的SQL
column username format a12
column opname format a16
column progress format a8
select username,sid,opname,
round(sofar*100 / totalwork,0) || '%' as progress,
time_remaining,sql_text
from v$session_longops , v$sql
where time_remaining <> 0
and sql_address = address
and sql_hash_value = hash_value
/
11。查看数据表的参数信息
SELECT partition_name, high_value, high_value_length, tablespace_name,
pct_free, pct_used, ini_trans, max_trans, initial_extent,
next_extent, min_extent, max_extent, pct_increase, FREELISTS,
freelist_groups, LOGGING, BUFFER_POOL, num_rows, blocks,
empty_blocks, avg_space, chain_cnt, avg_row_len, sample_size,
last_analyzed
FROM dba_tab_partitions
--WHERE table_name = :tname AND table_owner = :towner
ORDER BY partition_position
12.查看还没提交的事务
select * from v$locked_object;
select * from v$transaction;
13。查找object为哪些进程所用
select
p.spid,
s.sid,
s.serial# serial_num,
s.username user_name,
a.type object_type,
s.osuser os_user_name,
a.owner,
a.object object_name,
decode(sign(48 - command),
1,
to_char(command), 'Action Code #' || to_char(command) ) action,
p.program oracle_process,
s.terminal terminal,
s.program program,
s.status session_status
from v$session s, v$access a, v$process p
where s.paddr = p.addr and
s.type = 'USER' and
a.sid = s.sid and
a.object='SUBSCRIBER_ATTR'
order by s.username, s.osuser
14。回滚段查看
select rownum, sys.dba_rollback_segs.segment_name Name, v$rollstat.extents
Extents, v$rollstat.rssize Size_in_Bytes, v$rollstat.xacts XActs,
v$rollstat.gets Gets, v$rollstat.waits Waits, v$rollstat.writes Writes,
sys.dba_rollback_segs.status status from v$rollstat, sys.dba_rollback_segs,
v$rollname where v$rollname.name(+) = sys.dba_rollback_segs.segment_name and
v$rollstat.usn (+) = v$rollname.usn order by rownum
15。耗资源的进程(top session)
select s.schemaname schema_name, decode(sign(48 - command), 1,
to_char(command), 'Action Code #' || to_char(command) ) action, status
session_status, s.osuser os_user_name, s.sid, p.spid , s.serial# serial_num,
nvl(s.username, '[Oracle process]') user_name, s.terminal terminal,
s.program program, st.value criteria_value from v$sesstat st, v$session s , v$process p
where st.sid = s.sid and st.statistic# = to_number('38') and ('ALL' = 'ALL'
or s.status = 'ALL') and p.addr = s.paddr order by st.value desc, p.spid asc, s.username asc, s.osuser asc
16。查看锁(lock)情况
select /*+ RULE */ ls.osuser os_user_name, ls.username user_name,
decode(ls.type, 'RW', 'Row wait enqueue lock', 'TM', 'DML enqueue lock', 'TX',
'Transaction enqueue lock', 'UL', 'User supplied lock') lock_type,
o.object_name object, decode(ls.lmode, 1, null, 2, 'Row Share', 3,
'Row Exclusive', 4, 'Share', 5, 'Share Row Exclusive', 6, 'Exclusive', null)
lock_mode, o.owner, ls.sid, ls.serial# serial_num, ls.id1, ls.id2
from sys.dba_objects o, ( select s.osuser, s.username, l.type,
l.lmode, s.sid, s.serial#, l.id1, l.id2 from v$session s,
v$lock l where s.sid = l.sid ) ls where o.object_id = ls.id1 and o.owner
<> 'SYS' order by o.owner, o.object_name
17。查看等待(wait)情况
SELECT v$waitstat.class, v$waitstat.count count, SUM(v$sysstat.value) sum_value
FROM v$waitstat, v$sysstat WHERE v$sysstat.name IN ('db block gets',
'consistent gets') group by v$waitstat.class, v$waitstat.count
18。查看sga情况
SELECT NAME, BYTES FROM SYS.V_$SGASTAT ORDER BY NAME ASC
19。查看catched object
SELECT owner, name, db_link, namespace,
type, sharable_mem, loads, executions,
locks, pins, kept FROM v$db_object_cache
20。查看V$SQLAREA
SELECT SQL_TEXT, SHARABLE_MEM, PERSISTENT_MEM, RUNTIME_MEM, SORTS,
VERSION_COUNT, LOADED_VERSIONS, OPEN_VERSIONS, USERS_OPENING, EXECUTIONS,
USERS_EXECUTING, LOADS, FIRST_LOAD_TIME, INVALIDATIONS, PARSE_CALLS, DISK_READS,
BUFFER_GETS, ROWS_PROCESSED FROM V$SQLAREA
21。查看object分类数量
select decode (o.type#,1,'INDEX' , 2,'TABLE' , 3 , 'CLUSTER' , 4, 'VIEW' , 5 ,
'SYNONYM' , 6 , 'SEQUENCE' , 'OTHER' ) object_type , count(*) quantity from
sys.obj$ o where o.type# > 1 group by decode (o.type#,1,'INDEX' , 2,'TABLE' , 3
, 'CLUSTER' , 4, 'VIEW' , 5 , 'SYNONYM' , 6 , 'SEQUENCE' , 'OTHER' ) union select
'COLUMN' , count(*) from sys.col$ union select 'DB LINK' , count(*) from
22。按用户查看object种类
select u.name schema, sum(decode(o.type#, 1, 1, NULL)) indexes,
sum(decode(o.type#, 2, 1, NULL)) tables, sum(decode(o.type#, 3, 1, NULL))
clusters, sum(decode(o.type#, 4, 1, NULL)) views, sum(decode(o.type#, 5, 1,
NULL)) synonyms, sum(decode(o.type#, 6, 1, NULL)) sequences,
sum(decode(o.type#, 1, NULL, 2, NULL, 3, NULL, 4, NULL, 5, NULL, 6, NULL, 1))
others from sys.obj$ o, sys.user$ u where o.type# >= 1 and u.user# =
o.owner# and u.name <> 'PUBLIC' group by u.name order by
sys.link$ union select 'CONSTRAINT' , count(*) from sys.con$
23。有关connection的相关信息
1)查看有哪些用户连接
select s.osuser os_user_name, decode(sign(48 - command), 1, to_char(command),
'Action Code #' || to_char(command) ) action, p.program oracle_process,
status session_status, s.terminal terminal, s.program program,
s.username user_name, s.fixed_table_sequence activity_meter, '' query,
0 memory, 0 max_memory, 0 cpu_usage, s.sid, s.serial# serial_num
from v$session s, v$process p where s.paddr=p.addr and s.type = 'USER'
order by s.username, s.osuser
2)根据v.sid查看对应连接的资源占用等情况
select n.name,
v.value,
n.class,
n.statistic#
from v$statname n,
v$sesstat v
where v.sid = 71 and
v.statistic# = n.statistic#
order by n.class, n.statistic#
3)根据sid查看对应连接正在运行的sql
select /*+ PUSH_SUBQ */
command_type,
sql_text,
sharable_mem,
persistent_mem,
runtime_mem,
sorts,
version_count,
loaded_versions,
open_versions,
users_opening,
executions,
users_executing,
loads,
first_load_time,
invalidations,
parse_calls,
disk_reads,
buffer_gets,
rows_processed,
sysdate start_time,
sysdate finish_time,
'>' || address sql_address,
'N' status
from v$sqlarea
where address = (select sql_address from v$session where sid = 71)
24.查询表空间使用情况select a.tablespace_name "表空间名称",
100-round((nvl(b.bytes_free,0)/a.bytes_alloc)*100,2) "占用率(%)",
round(a.bytes_alloc/1024/1024,2) "容量(M)",
round(nvl(b.bytes_free,0)/1024/1024,2) "空闲(M)",
round((a.bytes_alloc-nvl(b.bytes_free,0))/1024/1024,2) "使用(M)",
Largest "最大扩展段(M)",
to_char(sysdate,'yyyy-mm-dd hh24:mi:ss') "采样时间"
from (select f.tablespace_name,
sum(f.bytes) bytes_alloc,
sum(decode(f.autoextensible,'YES',f.maxbytes,'NO',f.bytes)) maxbytes
from dba_data_files f
group by tablespace_name) a,
(select f.tablespace_name,
sum(f.bytes) bytes_free
from dba_free_space f
group by tablespace_name) b,
(select round(max(ff.length)*16/1024,2) Largest,
ts.name tablespace_name
from sys.fet$ ff, sys.file$ tf,sys.ts$ ts
where ts.ts#=ff.ts# and ff.file#=tf.relfile# and ts.ts#=tf.ts#
group by ts.name, tf.blocks) c
where a.tablespace_name = b.tablespace_name and a.tablespace_name = c.tablespace_name
25. 查询表空间的碎片程度
select tablespace_name,count(tablespace_name) from dba_free_space group by tablespace_name
having count(tablespace_name)>10;
alter tablespace name coalesce;
alter table name deallocate unused;
create or replace view ts_blocks_v as
select tablespace_name,block_id,bytes,blocks,'free space' segment_name from dba_free_space
union all
select tablespace_name,block_id,bytes,blocks,segment_name from dba_extents;
select * from ts_blocks_v;
select tablespace_name,sum(bytes),max(bytes),count(block_id) from dba_free_space
group by tablespace_name;
26.查看有哪些实例在运行:
select * from v$active_instances;
12:15 PM | Add a comment | Permalink | Blog it | Oracle
ORACLE性能调优原则
数据库的硬件配置:CPU、内存、网络条件
1.         CPU:在任何机器中CPU的数据处理能力往往是衡量计算机性能的一个标志,并且ORACLE是一个提供并行能力的数据库系统,在CPU方面的要求就更高了,如果运行队列数目超过了CPU处理的数目,性能就会下降,我们要解决的问题就是要适当增加CPU的数量了,当然我们还可以将需要许多资源的进程KILL掉;
2.         内存:衡量机器性能的另外一个指标就是内存的多少了,在ORACLE中内存和我们在建数据库中的交换区进行数据的交换,读数据时,磁盘I/O必须等待物理I/O操作完成,在出现ORACLE的内存瓶颈时,我们第一个要考虑的是增加内存,由于I/O的响应时间是影响ORACLE性能的主要参数,我将在这方面进行详细的讲解
3.         网络条件:NET*SQL负责数据在网络上的来往,大量的SQL会令网络速度变慢。比如10M的网卡和100的网卡就对NET*SQL有非常明显的影响,还有交换机、集线器等等网络设备的性能对网络的影响很明显,建议在任何网络中不要试图用3个集线器来将网段互联。
?         OS参数的设置
下表给出了OS的参数设置及说明,DBA可以根据实际需要对这些参数进行设置
内核参数名
说明
bufpages
对buffer空间不按静态分配,采用动态分配,使bufpages值随nbuf一起对buffer空间进行动态分配。
create_fastlinks
对HFS文件系统允许快速符号链接,
dbc_max_pct
加大最大动态buffer空间所占物理内存的百分比,以满足应用系统的读写命中率的需要。
dbc_min_pct
设置最小动态buffer空间所占物理内存的百分比
desfree
提高开始交换操作的最低空闲内存下限,保障系统的稳定性,防止出现不可预见的系统崩溃(Crash)。
fs_async
允许进行磁盘异步操作,提高CPU和磁盘的利用率
lotsfree
提高系统解除换页操作的空闲内存的上限值,保证应用程序有足够的可用内存空间。
maxdsiz
针对系统数据量大的特点,加大最大数据段的大小,保证应用的需要。(32位)
maxdsiz_64bit
maximum process data segment size for 64_bit
Maxssiz
加大最大堆栈段的大小。(32_bit)
maxssiz_64bit
加大最大堆栈段的大小(64_bit)
Maxtsiz
提高最大代码段大小,满足应用要求
maxtsiz_64bit
原值过大,应调小
Minfree
提高停止交换操作的自由内存的上限
Shmem
允许进行内存共享,以提高内存的利用率。
Shmmax
设置最大共享内存段的大小,完全满足目前的需要。
Timeslice
由于系统的瓶颈主要反映在磁盘I/O上,因此 降低时间片的大小,一方面可避免因磁盘I/O不畅造成CPU的等待,从而提高了CPU的综合利用率。另一方面减少了进程的阻塞量。
unlockable_mem
提高了不可锁内存的大小,使可用于换页和交换的内存空间扩大,用以满足系统对内存管理的要求。

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
86 [报告]
发表于 2011-01-24 11:31 |只看该作者
本帖最后由 compare2000 于 2013-05-13 11:23 编辑

摘自:http://www.zdnet.com.cn/developer/database/story/0,3800066906,39276980,00.htm
11:27 AM | Add a comment | Permalink | Blog it | Oracle
UNIX内存占用基本检查

1: 使用top指令.
  top指令是按cpu占用率排序的,如果想一次获得所有进程的快照,使用命令
top -n [最大进程数] -f 输出到文件,比如top -n 1000 -f topsnapshot.log
  top指令输出内存的统计信息包括
Memory: 2614368K (2249100K) real, 5838616K (5264696K) virtual, 113028K free  Page# 1/1
其中没有括号起来的是总数,括号括起来的部分是活动进程使用的内存数,free则是真实空闲的物理内存数.
进程信息的列包括
CPU TTY  PID USERNAME PRI NI   SIZE    RES STATE    TIME %WCPU  %CPU COMMAND
和内存相关的只有SIZE和RES
SIZE:任务的代码加上数据再加上栈空间的大小。
RES:任务使用的物理内存的总数量
要检查进程是否有内存泄露,和实际占用的内存大小,看RES列即可.
2:检查共享内存占用的内存容量
使用ipcs -m -b命令,-m表示检查共享内存,-b表示输出每个内存的字节数,得到的共享内存信息输出列包括:
T         ID     KEY        MODE        OWNER     GROUP      SEGSZ
SEGSZ列则是字节数.把每列相加则是共享内存占用的内存总数.
3: 调整内核动态高速缓冲区参数
HP-UX某些型号的服务器运行的时候需要几乎1G的内存维持系统运行,比如作为设备缓冲什么的.
可以用kmtune命令检查内核配置参数,动态高速缓冲区参数dbc_min_pct 和 dbc_max_pct参数表示一个高速缓冲区允许的可用内存的最小和最大百分比,dbc_max_pct的缺省值是50,一般设置为10即可.
4:在HP-UX上还可以使用glance
glance是个很强的工具,可惜不是免费的....
11:16 AM | Add a comment | Permalink | Blog it | HPUX
July 27
Oracle的优化器(Optimizer)
本文的目的:
1、说一说Oracle的Optimizer及其相关的一些知识。
2、回答一下为什么有时一个表的某个字段明明有索引,当观察一些SQL的执行计划时,发现确不走索引的问题。
3、如果你对 FIRST_ROWS、 ALL_ROWS这两种模式有疑惑时也可以看一下这篇文章。
开始吧:

Oracle在执行一个SQL之前,首先要分析一下语句的执行计划,然后再按执行计划去执行。分析语句的执行计划的工作是由优化器(Optimizer)来完成的。不同的情况,一条SQL可能有多种执行计划,但在某一时点,一定只有一种执行计划是最优的,花费时间是最少的。相信你一定会用Pl/sql Developer、Toad等工具去看一个语句的执行计划,不过你可能对Rule、Choose、First rows、All rows这几项有疑问,因为我当初也是这样的,那时我也疑惑为什么选了以上的不同的项,执行计划就变了?
1、优化器的优化方式
Oracle的优化器共有两种的优化方式,即基于规则的优化方式(Rule-Based Optimization,简称为RBO)和基于代价的优化方式(Cost-Based Optimization,简称为CBO)。
A、RBO方式:优化器在分析SQL语句时,所遵循的是Oracle内部预定的一些规则。比如我们常见的,当一个where子句中的一列有索引时去走索引。
B、CBO方式:依词义可知,它是看语句的代价(Cost)了,这里的代价主要指Cpu和内存。优化器在判断是否用这种方式时,主要参照的是表及索引的统计信息。统计信息给出表的大小 、有少行、每行的长度等信息。这些统计信息起初在库内是没有的,是你在做analyze后才出现的,很多的时侯过期统计信息会令优化器做出一个错误的执行计划,因些我们应及时更新这些信息。在Oracle8及以后的版本,Oracle列推荐用CBO的方式。
我们要明了,不一定走索引就是优的 ,比如一个表只有两行数据,一次IO就可以完成全表的检索,而此时走索引时则需要两次IO,这时对这个表做全表扫描(full table scan)是最好的。
2、优化器的优化模式(Optermizer Mode)
优化模式包括Rule,Choose,First rows,All rows这四种方式,也就是我们以上所提及的。如下我解释一下:
Rule:不用多说,即走基于规则的方式。
Choolse:这是我们应观注的,默认的情况下Oracle用的便是这种方式。指的是当一个表或或索引有统计信息,则走CBO的方式,如果表或索引没统计信息,表又不是特别的小,而且相应的列有索引时,那么就走索引,走RBO的方式。
First Rows:它与Choose方式是类似的,所不同的是当一个表有统计信息时,它将是以最快的方式返回查询的最先的几行,从总体上减少了响应时间。
All Rows:也就是我们所说的Cost的方式,当一个表有统计信息时,它将以最快的方式返回表的所有的行,从总体上提高查询的吞吐量。没有统计信息则走基于规则的方式。
3、如何设定选用哪种优化模式
a、Instance级别
我们可以通过在init<SID>.ora文件中设定OPTIMIZER_MODE=RULE、OPTIMIZER_MODE=CHOOSE、OPTIMIZER_MODE=FIRST_ROWS、OPTIMIZER_MODE=ALL_ROWS去选用3所提的四种方式,如果你没设定OPTIMIZER_MODE参数则默认用的是Choose这种方式。
B、Sessions级别
通过SQL> ALTER SESSION SET OPTIMIZER_MODE=<Mode>;来设定。
C、语句级别
这些需要用到Hint,比如:
SQL> SELECT /*+ RULE */ a.userid,
2 b.name,
3 b.depart_name
4 FROM tf_f_yhda a,
5 tf_f_depart b
6 WHERE a.userid=b.userid;
4、为什么有时一个表的某个字段明明有索引,当观察一些语的执行计划确不走索引呢?如何解决呢 ?
A、不走索引大体有以下几个原因
♀你在Instance级别所用的是all_rows的方式
♀你的表的统计信息(最可能的原因)
♀你的表很小,上文提到过的,Oracle的优化器认为不值得走索引。
B、解决方法
♀可以修改init<SID>.ora中的OPTIMIZER_MODE这个参数,把它改为Rule或Choose,重起数据库。也可以使用4中所提的Hint.
♀删除统计信息
SQL>analyze table table_name delete statistics;
♀表小不走索引是对的,不用调的。
5、其它相关
A、如何看一个表或索引是否是统计信息
SQL>SELECT * FROM user_tables
2 WHERE table_name=<table_name>
3 AND num_rows is not null;
SQL>SELECT * FROM user_indexes
2 WHERE table_name=<table_name>
3 AND num_rows is not null;
b、如果我们先用CBO的方式,我们应及时去更新表和索引的统计信息,以免生形不切合实的执行计划。
SQL> ANALYZE TABLE table_name COMPUTE STATISTICS;
SQL> ANALYZE INDEX index_name ESTIMATE STATISTICS;
具体的ANALYZE语句请参照Oracle8i/9i 的refrence文档。
12:42 PM | Add a comment | Permalink | Blog it | Oracle
oracle大数据量的导入和导出
在oracle中批量数据的导出是借助sqlplus的spool来实现的。批量数据的导入是通过sqlload来实现的。
大量数据的导出部分如下:
/***************************
* sql脚本部分 demo.sql begin
**************************/
/**************************
* @author meconsea
* @date 20050413
* @msn meconsea@hotmail.com
* @Email meconsea@163.com
**************************/
//##--markup html:html格式输出,缺省为off
//##--autocommit:自动提交insert、update、delete带来的记录改变,缺省为off
//##--define:识别命令中的变量前缀符,缺省为on,也就是'&',碰到变量前缀符,后面的字符串作为变量处理.
set colsep''; //##--域输出分隔符
set echo off; //##--显示start启动的脚本中的每个sql命令,缺省为on
set feedback off; //##--回显本次sql命令处理的记录条数,缺省为on
set heading off; //##--输出域标题,缺省为on
set pagesize 0; //##--输出每页行数,缺省为24,为了避免分页,可设定为0。
set linesize 80; //##--输出一行字符个数,缺省为80
set numwidth 12; //##--输出number类型域长度,缺省为10
set termout off; //##--显示脚本中的命令的执行结果,缺省为on
set timing off; //##--显示每条sql命令的耗时,缺省为off
set trimout on; //##--去除标准输出每行的拖尾空格,缺省为off
set trimspool on; //##--去除重定向(spool)输出每行的拖尾空格,缺省为off
spool C:datadmczry.txt;
select trim(czry_dm),trim(swjg_dm),trim(czry_mc) from dm_czry;
spool off;
EOF
/***********************
* demo.sql end
***********************/
在数据导入的时候采用sqlload来调用,在该部分调用的时候用java来调用sqlload。
sqlload包括ctl控制文件。例如:
/*********************
* meconsea ctl
********************/
load data
infile 'C:datadmczry.txt'
replace into table DM_CZRY
fields terminated by X'09'
(CZRY_DM,SWJG_DM,CZRY_MC)
/********************
* end
* 注释:里面的replace可以改为append
*******************/
java程序如下:
在java程序用可以根据需求写成一个bat文件。 把数据库的配置和文件的路径写到一个properties
文件。
/*************************
* ide properties
************************/
Dserver=test/test@SJJZ
sqlldr=D:\oracle\ora92\bin\SQLLDR.EXE
ctldmczry=C:\data\ctl\dmczry.ctl
txtdmczry=C:\data\dmczry.txt
写个PropertyBean.java来操作properties文件。(偷懒不写了!)
用DmCzry.java来把记录导入db中。部分代码如下:
/****************************
* 代码摘要
*
***************************/
..............
sqlldr = pb.getSqlldr();
txt = pb.getTxtdmczry();
ctl = pb.getCtldmczry();
Dserver= pb.getDserver();

Process processCmd = Runtime.getRuntime().exec(sqlldr+" "+cmdStr);
.............
12:42 PM | Add a comment | Permalink | Blog it | Oracle
在Oracle中查看各个表、表空间占用空间的大小
查看当前用户每个表占用空间的大小:
Select Segment_Name,Sum(bytes)/1024/1024 From User_Extents Group By Segment_Name
查看每个表空间占用空间的大小:
Select Tablespace_Name,Sum(bytes)/1024/1024 From Dba_Segments Group By Tablespace_Name
12:36 PM | Add a comment | Permalink | Blog it | Oracle
July 22
Oracle 数据类型
Oracle 数据类型

数据类型
描述
VARCHAR2(size)



NVARCHAR2(size)
可变长度的字符串,其最大长度为 size 个字节。size 的最大值是 4000,而最小值是 1。您必须指定一个 VARCHAR2 的 size。

可变长度的字符串,依据所选的国家字符集,其最大长度为 size 个字符或字节。size 的最大值取决于存储每个字符所需要的字节数,其上限为 4000 个字节。您必须为 NVARCHAR2 指定一个 size。
NUMBER(p,s)
精度为 p 并且数值范围为 s 的数值。精度 p 的范围是从 1 到 38。数值范围 s 的范围是从 -84 到 127。
LONG
可变长度的字符数据,其最大长度可达 2G 或 231 –1 个字节。
DATE
有效日期范围从公元前 4712 年 1 月 1 日到公元后 4712 年 12 月 31 日。
RAW(size)
长度为 size 字节的原始二进制数据。size 的最大值为 2000 字节。您必须为 RAW 值指定一个 size。
LONG RAW
可变长度的原始二进制数据,其最大长度可达 2G 字节。
CHAR(size)


NCHAR(size)

固定长度的字符数据,其长度为 size 字节。size 的最大值为 2000 字节。默认或最小的 size 是一个字节。

固定长度的字符数据,其长度依据国家字符集的选择为 size 个字符或字节。size 的最大值取决于存储每个字符所需要的字节数,其上限为 2000 个字节。默认或最小的 size 是一个字符或字节,这取决于字符集。
CLOB



NCLOB


一个字符大型对象,可容纳单字节的字符。不支持宽度不等的字符集。最大大小为 4G 字节。

一个字符大型对象,可容纳固定宽度的多字节字符。不支持宽度不等的字符集。最大大小为 4G 字节。储存国家字符集数据。
BLOB
一个二进制大对象。最大大小为 4G 字节。
BFILE
包含一个大型二进制文件的定位器,其存储在数据库的外面。使得可以以字节流 I/O 访问存在数据库服务器上的外部 LOB。最大大小为 4G 字节。





3:57 PM | Add a comment | Permalink | Blog it | Oracle
July 19
ORACLE锁的管理
ORACLE里锁有以下几种模式:
0:none
1:null      空
2:Row-S     行共享(RS):共享表锁  
3:Row-X     行专用(RX):用于行的修改
4:Share     共享锁(S):阻止其他DML操作
5:S/Row-X   共享行专用(SRX):阻止其他事务操作
6:exclusive 专用(X):独立访问使用
数字越大锁级别越高, 影响的操作越多。
一般的查询语句如select ... from ... ;是小于2的锁, 有时会在v$locked_object出现。
select ... from ... for update;      是2的锁。
当对话使用for update子串打开一个游标时,
所有返回集中的数据行都将处于行级(Row-X)独占式锁定,
其他对象只能查询这些数据行,不能进行update、delete或select...for update操作。
insert / update / delete ... ;      是3的锁。
没有commit之前插入同样的一条记录会没有反应,
因为后一个3的锁会一直等待上一个3的锁, 我们必须释放掉上一个才能继续工作。
创建索引的时候也会产生3,4级别的锁。
locked_mode为2,3,4不影响DML(insert,delete,update,select)操作,
但DDL(alter,drop等)操作会提示ora-00054错误。
有主外键约束时 update / delete ... ; 可能会产生4,5的锁。
DDL语句时是6的锁。
以DBA角色, 查看当前数据库里锁的情况可以用如下SQL语句:
select object_id,session_id,locked_mode from v$locked_object;
select t2.username,t2.sid,t2.serial#,t2.logon_time
from v$locked_object t1,v$session t2
where t1.session_id=t2.sid order by t2.logon_time;
如果有长期出现的一列,可能是没有释放的锁。
我们可以用下面SQL语句杀掉长期没有释放非正常的锁:
alter system kill session 'sid,serial#';
如果出现了锁的问题, 某个DML操作可能等待很久没有反应。
当你采用的是直接连接数据库的方式,
也不要用OS系统命令 $kill process_num 或者 $kill -9 process_num来终止用户连接,
因为一个用户进程可能产生一个以上的锁, 杀OS进程并不能彻底清除锁的问题。
记得在数据库级别用alter system kill session 'sid,serial#';杀掉不正常的锁。
5:42 PM | Add a comment | Permalink | Blog it | Oracle
July 18

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
87 [报告]
发表于 2011-01-24 11:31 |只看该作者
本帖最后由 compare2000 于 2013-05-13 11:23 编辑

利用STATSPAGK调整ORACLE性能
一、摘要
  大部分DBA都利用数据缓冲区命中率,latch free wait time等指标来做数据库性能调整。ORACLE提供的几个简单工具如STATSPACK(或以前版本的BSTAT/ESTAT)中包含了DBA 所需要的主要指标。但如何有效地利用这些数据调整性能?从那里开始调整?本文使用YAPP性能优化方法,结合STATSPACK提供的数据,给出了应该采取的调整步骤。
二、YAPP性能优化方法
  YAPP提供了另一种数据库性能调整方法,它不使用命中率等指标来衡量数据库的性能而是通过响应时间来衡量:
  Response time = service time + wait time
  即用户面对的响应时间由服务时间和等待时间组成。服务时间是处理你的请求实际使用的CPU时间,等待时间即等待资源可用所花费的时间。例如如果执行一个需要查找索引的SQL语句,CPU时间可能包括buffer cache中的索引数据块的处理时间,扫描该数据块找到所需行的时间等,此过程中ORACLE可能需要从盘上读数据,此时可能出现磁盘等待。
  YAPP方法的主要思路是找出service time,wait time的主要组成部分,然后进行排序并根据顺序调整。因此在IO不是引起问题的原因时,你不会做出象‘数据缓冲区命中率太低,最好增加缓冲的结论’,在SQL语句的CPU处理时间为20分钟时,你也不会做出‘必须将latchwait time减少20秒’的调整决定。另外用YAPP做优化时,你可以通过减少整个时间(如用更快的磁盘)或单位时间(如减少访问磁盘次数)。因此我们称YAPP为基于时间的调优方法,基本步骤如下:
  (1)、得到服务时间和等待时间及其组成部分
  (2)、将所有组成部分排序
  (3)、依次优化每个部分
  (4)、对表中的每一项,减少每次执行的代价或执行次数
  STATSPACK或bstat/estat中的数据完全能满足基于时间而不是基于命中率的优化方法。然而实际上要找出所有耗时的部分有些困难,在分析细节时service和wait本身并不精确,例如当你等待磁盘IO时,实际是从OS的缓冲中读写,实际上它是service (即CPU)时间,因此响应时间更好的表达为:
  Response time = time compnent1+….+time componentn
  用户感知的响应时间由一系列时间成分组成,所谓性能优化就是优化最耗时的成分,依次类推。从ORACLE instance的角度,请求一般含三个部分:client (如SQLPLUS,TUXEDO),前台进程(如LOCAL = NO的服务进程),后台进程(如DBWR)。
三、ORACLE中的时间记录
  所有的ORACLE进程(前台和后台)都会将所使用的CPU时间(service time)和各种等待事件所费时间记录下来,这些信息记录在SGA,用户可通过V$▁视图访问这些数据。这种数据分为session级和system级,用户可访问V$SYSTEM▁EVENT和V$SYSSTAT等视图来获取这些信息。ORACLE的STATSPACK工具(老版本中的BSTAT/ESTAT)就是查询这些视图来收集,计算和生成性能数据。要在ORACLE中产生时间记录,DBA必须在INIT.ORA中将TIMED▁STATISTICS设置为TRUE或通过ALTERSYSTEM将其定义为TRUE。8i以前的版本中时间单位为1/100秒。9i以后时间单位为1/1,000,000秒(微秒)。本文主要面向system级的数据,但使用的方法适用于session级的数据。
  在基于时间的优化方法中,最重要的视图是V$SYSTEM▁EVENT,V$SYSSTAT,V$LATCH,V$SQLAREA。V$SYSSTAT记录使用的CPU时间,V$SYSTEM▁EVENT记录进程等待时间花费的间,V$SQLAREA能用于找出最耗资源的SQL语句,而V$LATCH则可用于各种LATCH的等待信息。这些视图的详细结构和含义见Sewer Reference Mannual
四、利用STATSPACK优化性能
  前一节所说的V$▁ 中记录的数据都是系统启动后的累加值,从某一个时间点看这些累加值没有实际意义。只有每隔一段时间对这些累加值取样,计算出抽样之间的差别对优化才有价值。ORACLE的STATSPACK就是完成定期取样的工作,一般可用ORACLE的JOB来自动完成定期取样。数据收集完成后,DBA可以运行STATSPACK带的SPREPORT生成某两个取样点之间的差别。STATSPACK生成的报告中含有各种数据,包括上述四个视图中的数据。
  1、从STATSPACK报告中找出晌应时间组成部分
  基于时间的优化方法YAPP就是要找出最值得优化(最耗时)的成分。我们需找出前台进程使用的sevice time及等待事件花费的时间,service time信息可以从V$SYSSTAT中得到而事件等待花费的时间可从V$SYSTEM▁EVENT中得到。在STATSPACK报告中它们分别在 '''' Instance Activity Stats for DB '''' 和 '''' Wait Eventsfor DB '''' 一节中。尤其要注意三个时间成分:
  CPU used by this session Total CPU time spent.
  Recursive cpu usage
  Time spent doing recursive work in the foreground .   
  This includes data dictionary lookup and any PL /SQL work, including time spent
by SQL inside
  PL/SQL parse time cpu
  CPU time spent parsing SQL statements
  Recursive cpu usage和parse time cpu CPU是CPU used by this session的组成部分,除此之外的CPU时间我们一律定义为other CPU
  下一步需找出wait time的组成部分,最简单的方法就是找出 '''' Top5Wait Events '''' 下的5个等待事件,另一种方法即在 '''' Wait events for DB '''' 一节中找出最主要的事件。
  下面是根据STATSPACK报告的数据,用基于YAPP方法的优化步骤:
  (1)、找出parse time cpu所花费的时间
  (2)、找出CPU used by this session的值,减去parse time cpu,得出other CPU
  (3)、找出最耗时的等待事件
  (4)、将1—3的成分倒序排序,从第一项开始优化
  (5)、如果最耗时的等待事件不是latch free,见Tuning possibilities for wait events
  (6)、如果最耗时的等待事件是latch free,见Tuning possibilities for  latches
  (7)、如果最耗时的成分是与CPU有关的成分,见Tuning possibilities for CPU
  2、Tuning possibilities for CPU
  recursive cpu usage  如果处理大量的PLSQL此成分可能很高,本文不深入讨论此问题产生的原因,但你需要找出你所有的PLSQL,包括存储过程。找出CPU开销最大的PLSQL过程并对其优化。如果PLSQL中的主要工作是完成过程处理而非执行SQL,高开销的recursive cpu usage可能是需要优化的成分。
  parse time cpu  分析(parsing)SQL是一个开销很大的,它可以通过SQL语句的重用来避免。在预编译程序中,可通过增加MAXOPENCURSORS参数减少这部分开销。V$SQL的PARSE▁CALLS和EXECUTIONS可用来找出经常parse的语句。
  Other cpu  其它CPU主要用于处理缓冲区中的缓冲。一般而言,SQL语句花费的CPU时间与访问的缓冲区个数成比例,因此可以从V$SQL中的buffer gets得到SQL所防问的缓冲区个数,在STATSPACK中,可以查看 '''' SQL ordered by Gets for DB ''''。应对清单中的SQL语句优化。在bstat /estat报告中没有SQL语句,需定期查询V$SQLAREA,找出buffer gets增加最快的语句。9i中V$SQL中含有CPU▁T|ME字段,记录语句所花费的时间。
  3、Tuning possibilities for wait events
  db file scattered read  当ORACLE全表扫描时,一次需读多个数据块,此时使用这一等待事件。i n i t .o r a中的db▁ file▁mutiblock▁read▁count定义了多数据块读取时,一次能读取的最大块数。一般此参数定义为4—16,与数据库大小无关。但值越大DB▁BLOCK▁SlZE应越小。如果db file scattered read所占比例较大,必须减少IO的代价(如使用更快的磁盘,均衡IO分布),或减少全表扫描的次数(优化SQL语句)。参见下面IO优化。
  db file sequential read  表示ORACLE顺序读数据块,一般出现在读索引。如果db file sequential read等待很长,必须减少IO的代价(如使用更快的磁盘,均衡IO分布),或增加缓冲区。参见下面IO优化。
  buffer busy waits  多个进程访问(修改)缓冲区中同一数据块时出现此等待事件。当表没有free lists而对表并行插入时,或回滚段个数太少时,会出现此事件,V$WA|TSTAT及
STATSPACK报告可辅助找出原因。
  latch free  见下节。
  Enqueue  一般为应用程序使用的锁,例如SEELECT ... FOR UPDATE。如果此部分占用的时间较大,需分析应用系统,尤其是长时间占有锁资源的代码。要分析每个锁的等待时间不太可能,虽然V$LOCK记录了每种所等待的次数。
  log file sync  任何时候一个事物提交时,它将通知LGWR将LOG▁BUFFER写入日志文件,如果此部分占用时间较长,应减少COMMIT的次数,此外应使用性能更好的IO系统,另一个相关的事件是'''' log buffer parallel write '''' ,也与IO系统或CPU资源太少有关。
  free buffer wait   当一个SESSION需要空闲缓冲区但不能获取时,出现此等待事件。它将通知DBWR将脏的缓冲区写入数据文件。需要确定是否需要优化IO系统或者增加DBWR的个数,如果此事件不是由于IO系统性能引起的,可考虑增加缓冲区。
  rdbms ipc message  这些事件为空闲事件,一般应占主要的时间。''''
  pmon timer
  smon timer
  SQL*Net message  
  from client
  Tuning possibilities for latches
  shared pool   在parsing,尤其是hard parsing时。如果应用程序使用常量而不是BIND变量,可能会对此latch大量竞争,8.1.6以后可在init.ora中设置cursor▁sharing为force来减少hard parsing和对此latch的竞争,应用程序应保证只分析一次,执行多次。
  library cache  在soft parsing和hard parsing时都会大量使用此latch,如有可能应修改应用程序,减少竞争。在init.ora中设置cursor▁sharing为force可减少soft parsing和hard parsing需要的library cache。此外定义session▁cached▁cursors也能减少同一session中soft parsing对library cache的竞争。此外还可以定义cursor▁space▁for▁time=true。
  mw cache  row cache保护字典信息,如表和列的信息。hard parsing需要row cache 。在init.ora中设置cursor▁sharing为force可减少竞争。
  cache buffer chain   保护缓冲区的hash chain,用于对缓冲区的每次访问。一般可通过减少访问缓冲区次数来减少对l|atch的竞争。利用X$BH可以找出某些hash chain是否有许多的缓冲区,经常会有热块(如root index block)可能引起竞争。
  cache buffer lru chain  数据缓冲一组LRU块组成的链。每一个由一个cache buffer lru  chain 保护通过增加db▁ block▁lru▁latches可减少竞争。
  4、Tuning possibilities for I/O  
如果db file scattered/sequential read等直接的事件或file write(DBWR/LGWR)等非直接事件占用的时间比例较大,需要检查IO的效率。STATSPACK报告中有一节为 ''''Tablespace IO Summary for DB'''' 其中列出了表空间名称和它们的lO rate。另一节'''' file IO Statistics for DB''''列出了每个数据文件和它们的IO rate。首先应检查IO rate是否在期望的范围,其次应检查IO分布。如果IO rate 在可接受的范围(带cache的文件2—10ms或裸设备的每次IO 5—20ms)而且所有的数据文件IO  rate相似,那么可以肯定IO系统的性能符合要求。这种情况下减少每次IO代价没有必要,应该减少IO的次数(增加缓冲区或优化SQL)。然而如果IO rate大大超出合理范围或分布不合理,你需要重组IO子系统,如使用更多的磁盘驱动器,修改结构(如不使用RAID5),或IO重新分布。
五、值得注意的地方
  虽然ORACLE的统计和等待事件可以为你找出系统瓶颈提供了很好的数据,但有些情况这些数据可能会误导用户:
  ·ORACLE 8i以前的版本时间单位是1/100秒,但在某些特别|的系统中其精度不够。因而某些发生过的事件可能没有记录,而某些发生时间并不很长的事件记录的时间要比实际的时间长。这个问题在9i中不会出现(计量单位是1/1,000,000秒)。
  ·ORACLE前台进程花费的CPU时间记录比较粗糙,CPU used by this session远远大于实际使用配的时间,唯一能做的估计是所用CPU时间与所访问的缓冲区个数成比例,但在运行大的PLSQL,复杂的表达式,表连接时这种估计是不精确的。一般而言,这类估计在OLTP类型的应用系统是有效的,对DSS系统这种估计是不精确的。
  ·V$SYSSTAT视图包含前台和后台进程时间的总和,然而CPU时间成分中只有前台进程所用的时间值得注意,某些后台进程(尤其是DBWR,LGWR)使用了大量的CPU,导致前台进程统计配的不精确。
  ·某些时间没有计算。如SQL*NET的时间,但它影响响应时间。
  ·YAPP中只考虑了ORACLE前台进程使用的时间,如果ORACLE所用的时间只占响应时间的很小部分,优化ORACLE不会带来任何性能改进。
六、IBSTAT/ESTAT的使用
  STATSPACK只有8.1.6以后的版本才有,如果使用的老的版本只有BSTAT/ESTAT,两者的主要区别是:
  ·BSTAT/ESAT由DBA直接手工运行而不通过ORACLE JOB自动运行,每运行一次只收集一个时间间隔的数据。
  ·BSTAT/ESAT没有SQL语句的信息,如果OTHER CPU是开销最大的成分,需要查询V$SQL找出最耗资源的SQL。
  ·没有TOP5 WAIT EVENT,需查找视图找出最耗时的事件。
[关闭窗口]
1:41 PM | Add a comment | Permalink | Blog it | Oracle
Oracle性能调优实践中的几点心得
很多的时侯,做Oracle DBA的我们,当应用管理员向我们通告现在应用很慢、数据库很慢的时侯,我们到数据库时做几个示例的Select也发现同样的问题时,有些时侯我们会无从下手,因为我们认为数据库的各种命种率都是满足Oracle文档的建议。实际上如今的优化己经向优化等待(waits)转型了,实际中性能优化最根本的出现点也都集中在IO,这是影响性能最主要的方面,由系统中的等待去发现Oracle库中的不足、操作系统某些资源利用的不合理是一个比较好的办法,下面把我的一点实践经验与大家分享一下,本文测重于Unix环境。
一、通过操作系统的一些工具检查系统的状态,比如CPU、内存、交换、磁盘的利用率,根据经验或与系统正常时的状态相比对,有时系统表面上看起来看空闲这也可能不是一个正常的状态,因为cpu可能正等待IO的完成。除此之外我们还应观注那些占用系统资源(cpu、内存)的进程。
1、如何检查操作系统是否存在IO的问题?使用的工具有sar,这是一个比较通用的工具。
  Rp1#Sar -u 2 10
  即每隔2秒检察一次,共执行20次,当然这些都由你决定了。
  示例返回:
  HP-UX hpn2 B.11.00 U 9000/800    08/05/03
  18:26:32    %usr    %sys    %wio   %idle
  18:26:34      80       9      12       0
  18:26:36      78      11      11       0
  18:26:38      78       9      13       1
  18:26:40      81      10       9       1
  18:26:42      75      10      14       0
  18:26:44      76       8      15       0
  18:26:46      80       9      10       1
  18:26:48      78      11      11       0
  18:26:50      79      10      10       0
  18:26:52      81      10       9       0
  Average       79      10      11       0
    其中的%usr指的是用户进程使用的cpu资源的百分比,%sys指的是系统资源使用cpu资源的百分比,%wio指的是等待io完成的百分比,这是值得我们观注的一项,%idle即空闲的百分比。如果wio列的值很大,如在35%以上,说明你的系统的IO存在瓶颈,你的CPU花费了很大的时间去等待IO的完成。Idle很小说明系统CPU很忙。像我的这个示例,可以看到wio平均值为11说明io没什么特别的问题,而我的idle值为零,说明我的cpu已经满负荷运行了。
当你的系统存在IO的问题,可以从以下几个方面解决
  ♀联系相应的操作系统的技术支持对这方面进行优化,比如hp-ux在划定卷组时的条带化等方面。
  ♀查找Oracle中不合理的sql语句,对其进行优化
  ♀对Oracle中访问量频繁的表除合理建索引外,再就是把这些表分表空间存放以免访问上产生热点,再有就是对表合理分区。
2、关注一下内存。
    常用的工具便是vmstat,对于hp-unix来说可以用glance,Aix来说可以用topas,当你发现vmstat中pi列非零,memory中的free列的值很小,glance,topas中内存的利用率多于80%时,这时说明你的内存方面应该调节一下了,方法大体有以下几项。
  ♀划给Oracle使用的内存不要超过系统内存的1/2,一般保在系统内存的40%为益。
  ♀为系统增加内存
  ♀如果你的连接特别多,可以使用MTS的方式
  ♀打全补丁,防止内存漏洞。
3、如何找到点用系用资源特别大的Oracle的session及其执行的语句。
Hp-unix可以用glance,top
IBM AIX可以用topas
些外可以使用ps的命令。
通过这些程序我们可以找到点用系统资源特别大的这些进程的进程号,我们就可以通过以下的sql语句发现这个pid正在执行哪个sql,这个sql最好在pl/sql developer,toad等软件中执行, 把<>中的spid换成你的spid就可以了。
SELECT a.username,
       a.machine,
       a.program,
       a.sid,
       a.serial#,
       a.status,
       c.piece,
       c.sql_text
  FROM v$session a,
       v$process b,
       v$sqltext c
WHERE b.spid=<spid>  
   AND b.addr=a.paddr
   AND a.sql_address=c.address(+)
ORDER BY c.piece     
   我们就可以把得到的这个sql分析一下,看一下它的执行计划是否走索引,对其优化避免全表扫描,以减少IO等待,从而加快语句的执行速度。
提示:我在做优化sql时,经常碰到使用in的语句,这时我们一定要用exists把它给换掉,因为Oracle在处理In时是按Or的方式做的,即使使用了索引也会很慢。
比如:
SELECT  col1,col2,col3 FROM table1 a
WHERE a.col1 not in (SELECT  col1 FROM table2)
       可以换成:
SELECT  col1,col2,col3 FROM table1 a
WHERE not exists
(SELECT  'x'  FROM table2 b
WHERE  a.col1=b.col1)
4、另一个有用的脚本:查找前十条性能差的sql.
SELECT * FROM
  (
   SELECT PARSING_USER_ID
          EXECUTIONS,
          SORTS,
          COMMAND_TYPE,
          DISK_READS,
          sql_text
      FROM  v$sqlarea
     ORDER BY disk_reads DESC
   )  
  WHERE ROWNUM<10 ;

二、迅速发现Oracle Server的性能问题的成因,我们可以求助于v$session_wait这个视图,看系统的这些session在等什么,使用了多少的IO。以下是我提供的参考脚本:
脚本说明:查看占io较大的正在运行的session
SELECT se.sid,
       se.serial#,
       pr.SPID,
       se.username,
       se.status,
       se.terminal,
       se.program,
       se.MODULE,
       se.sql_address,
       st.event,
       st.p1text,
       si.physical_reads,
       si.block_changes
  FROM v$session se,
       v$session_wait st,
       v$sess_io si,
       v$process pr
WHERE st.sid=se.sid
   AND st.sid=si.sid
   AND se.PADDR=pr.ADDR
   AND se.sid>6
   AND st.wait_time=0
   AND st.event NOT LIKE '%SQL%'
ORDER BY physical_reads DESC
对检索出的结果的几点说明:
1、我是按每个正在等待的session已经发生的物理读排的序,因为它与实际的IO相关。
2、你可以看一下这些等待的进程都在忙什么,语句是否合理?
  Select sql_address from v$session where sid=<sid>;
  Select * from v$sqltext where address=<sql_address>;
执行以上两个语句便可以得到这个session的语句。
你也以用alter system kill session 'sid,serial#';把这个session杀掉。
3、应观注一下event这列,这是我们调优的关键一列,下面对常出现的event做以简要的说明:
a、buffer busy waits,free buffer waits这两个参数所标识是dbwr是否够用的问题,与IO很大相关的,当v$session_wait中的free buffer wait的条目很小或没有的时侯,说明你的系统的dbwr进程决对够用,不用调整;free buffer wait的条目很多,你的系统感觉起来一定很慢,这时说明你的dbwr已经不够用了,它产生的wio已经成为你的数据库性能的瓶颈,这时的解决办法如下:
a.1增加写进程,同时要调整db_block_lru_latches参数
示例:修改或添加如下两个参数
  db_writer_processes=4
  db_block_lru_latches=8
a.2开异步IO,IBM这方面简单得多,hp则麻烦一些,可以与Hp工程师联系。
b、db file sequential read,指的是顺序读,即全表扫描,这也是我们应该尽量减少的部分,解决方法就是使用索引、sql调优,同时可以增大db_file_multiblock_read_count这个参数。
c、db file scattered read,这个参数指的是通过索引来读取,同样可以通过增加db_file_multiblock_read_count这个参数来提高性能。
d、latch free,与栓相关的了,需要专门调节。
e、其他参数可以不特别观注。

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
88 [报告]
发表于 2011-01-24 11:34 |只看该作者
本帖最后由 compare2000 于 2013-08-12 15:12 编辑

一、tcpdump简明用法

Usage: tcpdump [-adeflnNOpqRStuvxX] [ -c count ] [ -C file_size ]
                 [ -F file ] [ -i interface ] [ -r file ] [ -s snaplen ]
                 [ -T type ] [ -U user ] [ -w file ] [ -E algo:secret ] [ expression ]

-c 捕获指定数量的报文 -F使用文件作为过滤表达式的源 -i 使用可选网络接口捕获报文 -p 禁止在杂凑模式下捕获、- r读取捕获文件而非网络接口 -w保存原始报文到文件中

tcpdump是非常强大的网络安全分析工具,可以将网络上截获的数据包保存到文件以备分析。可以定义过滤规则,只截获感兴趣的数据包,以减少输出文件大小和数据包分析时的装载和处理时间。

这篇文章只涉及tcpdump的基本用法,请记住tcpdump比我描述的强大的多。

针对网络接口、端口和协议的数据包截取。假定你要截取网络接口eth1,端口号6881的tcp数据包。数据文件保存为test.pcap。

tcpdump -w test.pcap -i eth1 tcp port 6881

很简单吧?如果要同时截取udp端口号33210和33220的数据包呢?

tcpdump -w test.pcap -i eth1 tcp port 6881 or udp \( 33210 or 33220 \)

'\'是转义字符,逻辑符号OR是加(+)的意思。其他表达式是截取端口号6881的tcp包加上端口号33210和33220的UDP包。 tcpdump过滤表达式的and运算符是交集的意思,因此截取端口号33210和33220的UDP包使用 or 而不是 and。and运算符的用法在下文描述。

怎样保存文件读取数据包呢?

tcpdump -nnr test.pcap

选项 -nn 不把网络IP和端口号转换成名字,r(read)读取包。

可以添加 -tttt 选项使时间戳格式更加可读。

tcpdump -ttttnnr test.pcap

怎样针对IP截取数据?

需向tcpdump指明IP类型,目的IP还是源IP?比如要嗅探的目的IP为10.168.28.22,tcp端口号22。

tcpdump -w test.pcap dst 10.168.28.22 and tcp port 22

目的IP和端口的交集(intersection),使用and运算符。

嗅探数据包大小缺省为96 bytes,可以指定 -s 改变缺省值。

tcpdump -w test.pcap -s 1550 dst 10.168.28.22 and tcp port 22

有些版本的tcpdump允许指定端口范围,下述指令为针对一定端口范围截取数据。

tcpdump tcp portrange 20-24

注意,上述指令没有指定 -w 把截取的数据包保存到文件而是直接输出到屏幕。

不知道端口号使用tcpdump

互联网的数据流量太大,可以使用lsof搜索指定端口。lsof的例子可以参考 Monitor who runs what, listen to what ports, established what connections。

二、tcpdump详细用法

第一种是关于类型的关键字,主要包括host,net,port, 例如 host 210.27.48.2,指明 210.27.48.2是一台主机,net 202.0.0.0 指明 202.0.0.0是一个网络地址,port 23 指明端口号是23。如果没有指定类型,缺省的类型是host.

第二种是确定传输方向的关键字,主要包括src , dst ,dst or src, dst and src ,这些关键字指明了传输的方向。举例说明,src 210.27.48.2 ,指明ip包中源地址是210.27.48.2 , dst net 202.0.0.0 指明目的网络地址是202.0.0.0 。如果没有指明方向关键字,则缺省是src or dst关键字。

第三种是协议的关键字,主要包括fddi,ip,arp,rarp,tcp,udp等类型。Fddi指明是在FDDI(分布式光纤数据接口网??上的特定的网络协议,实际上它是"ether" 的别名,fddi和ether具有类似的源地址和目的地址,所以可以将fddi协议包当作ether的包进行处理和分析。其他的几个关键字就是指明了监听的包的协议内容。如果没有指定任何协议,则tcpdump将会监听所有协议的信息包。
除了这三种类型的关键字之外,其他重要的关键字如下:gateway, broadcast,less,greater,还有三种逻辑运算,取非运算是 'not ' '! ', 与运算是'and','&&';或运算 是'or' ,'││';这些关键字可以组合起来构成强大的组合条件来满足人们的需要,下面举几个例子来说明。
普通情况下,直接启动tcpdump将监视第一个网络界面上所有流过的数据包。
# tcpdump
tcpdump: listening on fxp0
11:58:47.873028 202.102.245.40.netbios-ns > 202.102.245.127.netbios-ns: udp 50
11:58:47.974331 0:10:7b:8:3a:56 > 1:80:c2:0:0:0 802.1d ui/C len=43
0000 0000 0080 0000 1007 cf08 0900 0000
0e80 0000 902b 4695 0980 8701 0014 0002
000f 0000 902b 4695 0008 00
11:58:48.373134 0:0:e8:5b:6d:85 > Broadcast sap e0 ui/C len=97
ffff 0060 0004 ffff ffff ffff ffff ffff
0452 ffff ffff 0000 e85b 6d85 4008 0002
0640 4d41 5354 4552 5f57 4542 0000 0000
0000 00
使用-i参数指定tcpdump监听的网络界面,这在计算机具有多个网络界面时非常有用,
使用-c参数指定要监听的数据包数量,
使用-w参数指定将监听到的数据包写入文件中保存

A想要截获所有210.27.48.1 的主机收到的和发出的所有的数据包:
#tcpdump host 210.27.48.1

B想要截获主机210.27.48.1 和主机210.27.48.2 或210.27.48.3的通信,使用命令:(在命令行中适用   括号时,一定要
#tcpdump host 210.27.48.1 and (210.27.48.2 or 210.27.48.3 )

C如果想要获取主机210.27.48.1除了和主机210.27.48.2之外所有主机通信的ip包,使用命令:
#tcpdump ip host 210.27.48.1 and ! 210.27.48.2

D如果想要获取主机210.27.48.1接收或发出的telnet包,使用如下命令:
#tcpdump tcp port 23 host 210.27.48.1

E 对本机的udp 123 端口进行监视 123 为ntp的服务端口
# tcpdump udp port 123

F 系统将只对名为hostname的主机的通信数据包进行监视。主机名可以是本地主机,也可以是网络上的任何一台计算机。下面的命令可以读取主机hostname发送的所有数据:
#tcpdump -i eth0 src host hostname

G 下面的命令可以监视所有送到主机hostname的数据包:
#tcpdump -i eth0 dst host hostname

H 我们还可以监视通过指定网关的数据包:
#tcpdump -i eth0 gateway Gatewayname

I 如果你还想监视编址到指定端口的TCP或UDP数据包,那么执行以下命令:
#tcpdump -i eth0 host hostname and port 80

J 如果想要获取主机210.27.48.1除了和主机210.27.48.2之外所有主机通信的ip包
,使用命令:
#tcpdump ip host 210.27.48.1 and ! 210.27.48.2

K 想要截获主机210.27.48.1 和主机210.27.48.2 或210.27.48.3的通信,使用命令
:(在命令行中适用   括号时,一定要
#tcpdump host 210.27.48.1 and (210.27.48.2 or 210.27.48.3 )

L 如果想要获取主机210.27.48.1除了和主机210.27.48.2之外所有主机通信的ip包,使用命令:
#tcpdump ip host 210.27.48.1 and ! 210.27.48.2

M 如果想要获取主机210.27.48.1接收或发出的telnet包,使用如下命令:
#tcpdump tcp port 23 host 210.27.48.1

第三种是协议的关键字,主要包括fddi,ip ,arp,rarp,tcp,udp等类型
除了这三种类型的关键字之外,其他重要的关键字如下:gateway, broadcast,less,
greater,还有三种逻辑运算,取非运算是 'not ' '! ', 与运算是'and','&&';或运算 是'o
r' ,'||';
第二种是确定传输方向的关键字,主要包括src , dst ,dst or src, dst and src ,
如果我们只需要列出送到80端口的数据包,用dst port;如果我们只希望看到返回80端口的数据包,用src port。
#tcpdump –i eth0 host hostname and dst port 80 目的端口是80
或者
#tcpdump –i eth0 host hostname and src port 80 源端口是80 一般是提供http的服务的主机
如果条件很多的话 要在条件之前加and 或 or 或 not
#tcpdump -i eth0 host ! 211.161.223.70 and ! 211.161.223.71 and dst port 80

如果在ethernet 使用混杂模式 系统的日志将会记录

May 7 20:03:46 localhost kernel: eth0: Promiscuous mode enabled.
May 7 20:03:46 localhost kernel: device eth0 entered promiscuous mode
May 7 20:03:57 localhost kernel: device eth0 left promiscuous mode

tcpdump对截获的数据并没有进行彻底解码,数据包内的大部分内容是使用十六进制的形式直接打印输出的。显然这不利于分析网络故障,通常的解决办法是先使用带-w参数的tcpdump 截获数据并保存到文件中,然后再使用其他程序进行解码分析。当然也应该定义过滤规则,以避免捕获的数据包填满整个硬盘。

除了过滤语句,还有一个很重要的参数,也就是说,如果这个参数不设置正确,会导致包数据的丢失!

它就是-s 参数,snaplen, 也就是数据包的截取长度,仔细看man就会明白的!默认截取长度为60个字节,但一般ethernet MTU都是1500字节。所以,要抓取大于60字节的包时,使用默认参数就会导致包数据丢失!

只要使用-s 0就可以按包长,截取数据!
tcpdump是一个用于截取网络分组,并输出分组内容的工具。tcpdump凭借强大的功能和灵活的截取策略,使其成为类UNIX系统下用于网络分析和问题排查的首选工具。
   tcpdump提供了源代码,公开了接口,因此具备很强的可扩展性,对于网络维护和入侵者都是非常有用的工具。tcpdump存在于基本的Linux系统中,由于它需要将网络界面设置为混杂模式,普通用户不能正常执行,但具备root权限的用户可以直接执行它来获取网络上的信息。因此系统中存在网络分析工具主要不是对本机安全的威胁,而是对网络上的其他计算机的安全存在威胁。

一、概述
顾名思义,tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。


引用
# tcpdump -vv
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
11:53:21.444591 IP (tos 0x10, ttl  64, id 19324, offset 0, flags [DF], proto 6, length: 92) asptest.localdomain.ssh > 192.168.228.244.1858: P 3962132600:3962132652(52) ack 2726525936 win 1266
asptest.localdomain.1077 > 192.168.228.153.domain: [bad udp cksum 166e!]  325+ PTR? 244.228.168.192.in-addr.arpa. (46)
11:53:21.446929 IP (tos 0x0, ttl  64, id 42911, offset 0, flags [DF], proto 17, length: 151) 192.168.228.153.domain > asptest.localdomain.1077:  325 NXDomain q: PTR? 244.228.168.192.in-addr.arpa. 0/1/0 ns: 168.192.in-addr.arpa. (123)
11:53:21.447408 IP (tos 0x10, ttl  64, id 19328, offset 0, flags [DF], proto 6, length: 172) asptest.localdomain.ssh > 192.168.228.244.1858: P 168:300(132) ack 1 win 1266
347 packets captured
1474 packets received by filter
745 packets dropped by kernel

不带参数的tcpdump会收集网络中所有的信息包头,数据量巨大,必须过滤。

二、选项介绍

引用
-A 以ASCII格式打印出所有分组,并将链路层的头最小化。

-c 在收到指定的数量的分组后,tcpdump就会停止。

-C 在将一个原始分组写入文件之前,检查文件当前的大小是否超过了参数file_size 中指定的大小。如果超过了指定大小,则关闭当前文件,然后在打开一个新的文件。参数 file_size 的单位是兆字节(是1,000,000字节,而不是1,048,576字节)。

-d 将匹配信息包的代码以人们能够理解的汇编格式给出。

-dd 将匹配信息包的代码以c语言程序段的格式给出。

-ddd 将匹配信息包的代码以十进制的形式给出。

-D 打印出系统中所有可以用tcpdump截包的网络接口。

-e 在输出行打印出数据链路层的头部信息。

-E 用spi@ipaddr algo:secret解密那些以addr作为地址,并且包含了安全参数索引值spi的IPsec ESP分组。

-f 将外部的Internet地址以数字的形式打印出来。

-F 从指定的文件中读取表达式,忽略命令行中给出的表达式。

-i 指定监听的网络接口。

-l 使标准输出变为缓冲行形式,可以把数据导出到文件。

-L 列出网络接口的已知数据链路。

-m 从文件module中导入SMI MIB模块定义。该参数可以被使用多次,以导入多个MIB模块。

-M 如果tcp报文中存在TCP-MD5选项,则需要用secret作为共享的验证码用于验证TCP-MD5选选项摘要(详情可参考RFC 2385)。

-b 在数据-链路层上选择协议,包括ip、arp、rarp、ipx都是这一层的。

-n 不把网络地址转换成名字。

-nn 不进行端口名称的转换。

-N 不输出主机名中的域名部分。例如,‘nic.ddn.mil‘只输出’nic‘。

-t 在输出的每一行不打印时间戳。

-O 不运行分组分组匹配(packet-matching)代码优化程序。

-P 不将网络接口设置成混杂模式。

-q 快速输出。只输出较少的协议信息。

-r 从指定的文件中读取包(这些包一般通过-w选项产生)。

-S 将tcp的序列号以绝对值形式输出,而不是相对值。

-s 从每个分组中读取最开始的snaplen个字节,而不是默认的68个字节。

-T 将监听到的包直接解释为指定的类型的报文,常见的类型有rpc远程过程调用)和snmp(简单网络管理协议;)。

-t 不在每一行中输出时间戳。

-tt 在每一行中输出非格式化的时间戳。

-ttt 输出本行和前面一行之间的时间差。

-tttt 在每一行中输出由date处理的默认格式的时间戳。

-u 输出未解码的NFS句柄。

-v 输出一个稍微详细的信息,例如在ip包中可以包括ttl和服务类型的信息。

-vv 输出详细的报文信息。

-w 直接将分组写入文件中,而不是不分析并打印出来。


三、tcpdump的表达式介绍
表达式是一个正则表达式,tcpdump利用它作为过滤报文的条件,如果一个报文满足表 达式的条件,则这个报文将会被捕获。如果没有给出任何条件,则网络上所有的信息包 将会被截获。
在表达式中一般如下几种类型的关键字:

引用
第一种是关于类型的关键字,主要包括host,net,port,例如 host 210.27.48.2, 指明 210.27.48.2是一台主机,net 202.0.0.0指明202.0.0.0是一个网络地址,port 23 指明端口号是23。如果没有指定类型,缺省的类型是host。
第二种是确定传输方向的关键字,主要包括src,dst,dst or src,dst and src, 这些关键字指明了传输的方向。举例说明,src 210.27.48.2 ,指明ip包中源地址是 210.27.48.2 , dst net 202.0.0.0 指明目的网络地址是202.0.0.0。如果没有指明 方向关键字,则缺省是src or dst关键字。
第三种是协议的关键字,主要包括fddi,ip,arp,rarp,tcp,udp等类型。Fddi指明是在FDDI (分布式光纤数据接口网络)上的特定的网络协议,实际上它是”ether”的别名,fddi和ether 具有类似的源地址和目的地址,所以可以将fddi协议包当作ether的包进行处理和分析。 其他的几个关键字就是指明了监听的包的协议内容。如果没有指定任何协议,则tcpdump 将会 监听所有协议的信息包。

除了这三种类型的关键字之外,其他重要的关键字如下:gateway, broadcast,less, greater, 还有三种逻辑运算,取非运算是 ‘not ' '! ‘, 与运算是’and’,’&&';或运算是’or’ ,’||’; 这些关键字可以组合起来构成强大的组合条件来满足人们的需要。

四、输出结果介绍
下面我们介绍几种典型的tcpdump命令的输出信息
(1) 数据链路层头信息
使用命令:

#tcpdump --e host ICE

ICE 是一台装有linux的主机。它的MAC地址是0:90:27:58:AF:1A H219是一台装有Solaris的SUN工作站。它的MAC地址是8:0:20:79:5B:46; 上一条命令的输出结果如下所示:

引用
21:50:12.847509 eth0 < 8:0:20:79:5b:46 0:90:27:58:af:1a ip 60: h219.33357 > ICE.  telne t 0:0(0) ack 22535 win 8760 (DF)

21:50:12是显示的时间, 847509是ID号,eth0 <表示从网络接口eth0接收该分组, eth0 >表示从网络接口设备发送分组, 8:0:20:79:5b:46是主机H219的MAC地址, 它表明是从源地址H219发来的分组. 0:90:27:58:af:1a是主机ICE的MAC地址, 表示该分组的目的地址是ICE。 ip 是表明该分组是IP分组,60 是分组的长度, h219.33357 > ICE. telnet 表明该分组是从主机H219的33357端口发往主机ICE的 TELNET(23)端口。 ack 22535 表明对序列号是222535的包进行响应。 win 8760表明发 送窗口的大小是8760。

(2) ARP包的tcpdump输出信息
使用命令:

#tcpdump arp

得到的输出结果是:

引用
22:32:42.802509 eth0 > arp who-has route tell ICE (0:90:27:58:af:1a)
22:32:42.802902 eth0 < arp reply route is-at 0:90:27:12:10:66 (0:90:27:58:af:1a)

22:32:42是时间戳, 802509是ID号, eth0 >表明从主机发出该分组,arp表明是ARP请求包, who-has route tell ICE表明是主机ICE请求主机route的MAC地址。 0:90:27:58:af:1a是主机 ICE的MAC地址。

(3) TCP包的输出信息
用tcpdump捕获的TCP包的一般输出信息是:

引用
src > dst: flags data-seqno ack window urgent options

src > dst:表明从源地址到目的地址, flags是TCP报文中的标志信息,S 是SYN标志, F (FIN), P (PUSH) , R (RST) "." (没有标记); data-seqno是报文中的数据 的顺序号, ack是下次期望的顺序号, window是接收缓存的窗口大小, urgent表明 报文中是否有紧急指针。 Options是选项。

(4) UDP包的输出信息
用tcpdump捕获的UDP包的一般输出信息是:     

引用
route.port1 > ICE.port2: udp lenth

UDP十分简单,上面的输出行表明从主机route的port1端口发出的一个UDP报文 到主机ICE的port2端口,类型是UDP, 包的长度是lenth。

五、举例
(1) 想要截获所有210.27.48.1 的主机收到的和发出的所有的分组:

#tcpdump host 210.27.48.1

(2) 想要截获主机210.27.48.1 和主机210.27.48.2或210.27.48.3的通信,使用命令(注意:括号前的反斜杠是必须的):

#tcpdump host 210.27.48.1 and \(210.27.48.2 or 210.27.48.3 \)

(3) 如果想要获取主机210.27.48.1除了和主机210.27.48.2之外所有主机通信的ip包,使用命令:

#tcpdump ip host 210.27.48.1 and ! 210.27.48.2

(4) 如果想要获取主机192.168.228.246接收或发出的ssh包,并且不转换主机名使用如下命令:

#tcpdump -nn -n src host 192.168.228.246 and port 22 and tcp

(5) 获取主机192.168.228.246接收或发出的ssh包,并把mac地址也一同显示:

# tcpdump -e src host 192.168.228.246 and port 22 and tcp -n -nn

(6) 过滤的是源主机为192.168.0.1与目的网络为192.168.0.0的报头:

tcpdump src host 192.168.0.1 and dst net 192.168.0.0/24

(7) 过滤源主机物理地址为XXX的报头:

tcpdump ether src 00:50:04:BA:9B and dst……

(为什么ether src后面没有host或者net?物理地址当然不可能有网络喽)。
( 过滤源主机192.168.0.1和目的端口不是telnet的报头,并导入到tes.t.txt文件中:

Tcpdump src host 192.168.0.1 and dst port not telnet -l > test.txt

ip icmp arp rarp 和 tcp、udp、icmp这些选项等都要放到第一个参数的位置,用来过滤数据报的类型。


tcpdump采用命令行方式,它的命令格式为:

tcpdump [-nn] [-i 接口] [-w 储存档名] [-c 次数] [-Ae]
                        [-qX] [-r 文件] [所欲捕获的数据内容]
参数:
-nn,直接以 IP 及 Port Number 显示,而非主机名与服务名称。
-i,后面接要「监听」的网络接口,例如 eth0, lo, ppp0 等等的接口。
-w,如果你要将监听所得的数据包数据储存下来,用这个参数就对了。后面接文件名。
-c,监听的数据包数,如果没有这个参数, tcpdump 会持续不断的监听,
     直到用户输入 [ctrl]-c 为止。
-A,数据包的内容以 ASCII 显示,通常用来捉取 WWW 的网页数据包资料。
-e,使用资料连接层 (OSI 第二层) 的 MAC 数据包数据来显示。
-q,仅列出较为简短的数据包信息,每一行的内容比较精简。
-X,可以列出十六进制 (hex) 以及 ASCII 的数据包内容,对于监听数据包内容很有用。
-r,从后面接的文件将数据包数据读出来。那个「文件」是已经存在的文件,
     并且这个「文件」是由 -w 所制作出来的。
所欲捕获的数据内容:我们可以专门针对某些通信协议或者是 IP 来源进行数据包捕获。

     那就可以简化输出的结果,并取得最有用的信息。常见的表示方法有。
     'host foo', 'host 127.0.0.1' :针对单台主机来进行数据包捕获。
     'net 192.168' :针对某个网段来进行数据包的捕获。
     'src host 127.0.0.1' 'dst net 192.168':同时加上来源(src)或目标(dst)限制。
     'tcp port 21':还可以针对通信协议检测,如tcp、udp、arp、ether 等。
     除了这三种类型的关键字之外,其他重要的关键字如下:gateway, broadcast,less,
greater,还有三种逻辑运算,取非运算是 'not ' '! ', 与运算是'and','&&';或运算 是'o
r' ,'||';


范例一:以 IP 与 Port Number 捉下 eth0 这个网卡上的数据包,持续 3 秒
[root@linux ~]# tcpdump -i eth0 -nn
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
01:33:40.41 IP 192.168.1.100.22 > 192.168.1.11.1190: P 116:232(116) ack 1 win
9648
01:33:40.41 IP 192.168.1.100.22 > 192.168.1.11.1190: P 232:364(132) ack 1 win
9648
<==按下 [ctrl]-c 之后结束
6680 packets captured              <==捉取下来的数据包数量
14250 packets received by filter   <==由过滤所得的总数据包数量
7512 packets dropped by kernel     <==被核心所丢弃的数据包

至于那个在范例一所产生的输出中,我们可以大概区分为几个字段,现以范例一当中那行特殊字体行来说明一下:

· 01:33:40.41:这个是此数据包被捕获的时间,“时:分:秒”的单位。

· IP:通过的通信协议是IP。

· 192.168.1.100.22>:传送端是192.168.1.100这个IP,而传送的Port Number为22,那个大于(>)的符号指的是数据包的传输方向。

· 192.168.1.11.1190:接收端的IP是192.168.1.11,且该主机开启port 1190来接收。

· P 116:232(116):这个数据包带有PUSH的数据传输标志,且传输的数据为整体数据的116~232 Byte,所以这个数据包带有116 Bytes的数据量。

· ack 1 win 9648:ACK与Window size的相关资料。

最简单的说法,就是该数据包是由192.168.1.100传到192.168.1.11,通过的port是由22到1190,且带有116 Bytes的数据量,使用的是PUSH的标记,而不是SYN之类的主动联机标志。

接下来,在一个网络状态很忙的主机上面,你想要取得某台主机对你联机的数据包数据时,使用tcpdump配合管线命令与正则表达式也可以,不过,毕竟不好捕获。我们可以通过tcpdump的表达式功能,就能够轻易地将所需要的数据独立的取出来。在上面的范例一当中,我们仅针对eth0做监听,所以整个eth0接口上面的数据都会被显示到屏幕上,但这样不好分析,可以简化吗?例如,只取出port 21的联机数据包,可以这样做:



[root@linux ~]# tcpdump -i eth0 -nn port 21tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes01:54:37.96 IP 192.168.1.11.1240 > 192.168.1.100.21:. ack 1 win 6553501:54:37.96 IP 192.168.1.100.21 > 192.168.1.11.1240 1:21(20) ack 1 win 584001:54:38.12 IP 192.168.1.11.1240 > 192.168.1.100.21:. ack 21 win 6551501:54:42.79 IP 192.168.1.11.1240 > 192.168.1.100.21 1:17(16) ack 21 win 6551501:54:42.79 IP 192.168.1.100.21 > 192.168.1.11.1240: . ack 17 win 584001:54:42.79 IP 192.168.1.100.21 > 192.168.1.11.1240: P 21:55(34) ack 17 win 5840

看!这样就仅取出port 21的信息,如果仔细看的话,你会发现数据包的传递都是双向的,Client端发出请求而Server端则予以响应,所以,当然是有去有回了。而我们也就可以经过这个数据包的流向来了解到数据包运动的过程了。例如:

· 我们先在一个终端机窗口输入“tcpdump-i lo-nn”的监听。

· 再另开一个终端机窗口来对本机(127.0.0.1)登录“ssh localhost”,那么输出的结果会是如何?



[root@linux ~]# tcpdump -i lo -nn 1 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode 2 listening on lo, link-type EN10MB (Ethernet), capture size 96 bytes 3 11:02:54.253777 IP 127.0.0.1.32936 > 127.0.0.1.22: S 933696132:933696132(0) win 32767 4 11:02:54.253831 IP 127.0.0.1.22 > 127.0.0.1.32936: S 920046702:920046702(0) ack 933696133 win 32767 5 11:02:54.253871 IP 127.0.0.1.32936 > 127.0.0.1.22: . ack 1 win 8192 6 11:02:54.272124 IP 127.0.0.1.22 > 127.0.0.1.32936: P 1:23(22) ack 1 win 8192 7 11:02:54.272375 IP 127.0.0.1.32936 > 127.0.0.1.22: . ack 23 win 8192

代码显示的头两行是tcpdump的基本说明,然后:

· 第3行显示的是来自Client端带有SYN主动联机的数据包。
· 第4行显示的是来自Server端,除了响应Client端之外(ACK),还带有SYN主动联机的标志。
· 第5行则显示Client端响应Server确定联机建立(ACK)。
· 第6行以后则开始进入数据传输的步骤。

从第3~5行的流程来看,熟不熟悉啊?没错。那就是3次握手的基础流程,有趣吧。不过tcpdump之所以被称为黑客软件之一远不止上面介绍的功能。上面介绍的功能可以用来作为我们主机的数据包联机与传输的流程分析,这将有助于我们了解到数据包的运作,同时了解到主机的防火墙设置规则是否有需要修订的地方。

还有更神奇的用法。当我们使用tcpdump在Router上面监听明文的传输数据时,例如FTP传输协议,你觉得会发生什么问题呢?我们先在主机端执行“tcpdump -i lo port 21 -nn –X”,然后再以FTP登录本机,并输入账号与密码,结果你就可以发现如下的状况:



[root@linux ~]# tcpdump -i lo -nn -X 'port 21' 0x0000: 4500 0048 2a28 4000 4006 1286 7f00 0001 E..H*(@.@....... 0x0010: 7f00 0001 0015 80ab 8355 2149 835c d825 .........U!I.\.% 0x0020: 8018 2000 fe3c 0000 0101 080a 0e2e 0b67 .....<.........g 0x0030: 0e2e 0b61 3232 3020 2876 7346 5450 6420 ...a220.(vsFTPd. 0x0040: 322e 302e 3129 0d0a 2.0.1).. 0x0000: 4510 0041 d34b 4000 4006 6959 7f00 0001 E..A.K@.@.iY.... 0x0010: 7f00 0001 80ab 0015 835c d825 8355 215d .........\.%.U!] 0x0020: 8018 2000 fe35 0000 0101 080a 0e2e 1b37 .....5.........7 0x0030: 0e2e 0b67 5553 4552 2064 6d74 7361 690d ...gUSER.dmtsai. 0x0040: 0a . 0x0000: 4510 004a d34f 4000 4006 694c 7f00 0001 E..J.O@.@.iL.... 0x0010: 7f00 0001 80ab 0015 835c d832 8355 217f .........\.2.U!. 0x0020: 8018 2000 fe3e 0000 0101 080a 0e2e 3227 .....>........2' 0x0030: 0e2e 1b38 5041 5353 206d 7970 6173 7377 ...8PASS.mypassw 0x0040: 6f72 6469 7379 6f75 0d0a ordisyou..

上面的输出结果已经被简化过了,你需要自行在你的输出结果中搜索相关的字符串才行。从上面输出结果的特殊字体中,我们可以发现该FTP软件使用的是 vsFTPd,并且用户输入dmtsai这个账号名称,且密码是mypasswordisyou。如果使用的是明文方式来传输你的网络数据呢?

另外你得了解,为了让网络接口可以让tcpdump监听,所以执行tcpdump时网络接口会启动在“混杂模式(promiscuous)”,所以你会在 /var/log/messages里面看到很多的警告信息,通知你说你的网卡被设置成为混杂模式。别担心,那是正常的。至于更多的应用,请参考man tcpdump了。

例题:如何使用tcpdump监听来自eth0适配卡且通信协议为port 22,目标来源为192.168.1.100的数据包资料?

答:tcpdump -i eth0 -nn port 22 and src host 192.168.1.100



例题:如何使用tcpdump抓取访问eth0适配卡且访问端口为tcp 9080?

答:tcpdump -i eth0 dst 172.168.70.35 and tcp port 9080

例题:如何使用tcpdump抓取与主机192.168.43.23或着与主机192.168.43.24通信报文,并且显示在控制台上

tcpdump -X -s 1024 -i eth0 host \(192.168.43.23 or 192.168.43.24\) and  host 172.16.70.35

注:必须指定网卡

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
89 [报告]
发表于 2011-01-24 11:34 |只看该作者
本帖最后由 compare2000 于 2014-07-24 10:13 编辑

本文针对 linux 下的 C++ 程序的内存泄漏的检测方法及其实现进行探讨。其中包括 C++ 中的 new 和 delete 的基本原理,内存检测子系统的实现原理和具体方法,以及内存泄漏检测的高级话题。作为内存检测子系统实现的一部分,提供了一个具有更好的使用特性的互斥体(Mutex)类。
1.开发背景
在 windows 下使用 VC 编程时,我们通常需要 DEBUG 模式下运行程序,而后调试器将在退出程序时,打印出程序运行过程中在堆上分配而没有释放的内存信息,其中包括代码文件名、行号以及内存大小。该功能是 MFC Framework 提供的内置机制,封装在其类结构体系内部。
在 linux 或者 unix 下,我们的 C++ 程序缺乏相应的手段来检测内存信息,而只能使用 top 指令观察进程的动态内存总额。而且程序退出时,我们无法获知任何内存泄漏信息。为了更好的辅助在 linux 下程序开发,我们在我们的类库项目中设计并实现了一个内存检测子系统。下文将简述 C++ 中的 new 和 delete 的基本原理,并讲述了内存检测子系统的实现原理、实现中的技巧,并对内存泄漏检测的高级话题进行了讨论。






回页首



2.New和delete的原理
当我们在程序中写下 new 和 delete 时,我们实际上调用的是 C++ 语言内置的 new operator 和 delete operator。所谓语言内置就是说我们不能更改其含义,它的功能总是一致的。以 new operator 为例,它总是先分配足够的内存,而后再调用相应的类型的构造函数初始化该内存。而 delete operator 总是先调用该类型的析构函数,而后释放内存(图1)。我们能够施加影响力的事实上就是 new operator 和 delete operator 执行过程中分配和释放内存的方法。

new operator 为分配内存所调用的函数名字是 operator new,其通常的形式是 void * operator new(size_t size); 其返回值类型是 void*,因为这个函数返回一个未经处理(raw)的指针,未初始化的内存。参数 size 确定分配多少内存,你能增加额外的参数重载函数 operator new,但是第一个参数类型必须是 size_t。
delete operator 为释放内存所调用的函数名字是 operator delete,其通常的形式是 void operator delete(void *memoryToBeDeallocated);它释放传入的参数所指向的一片内存区。
这里有一个问题,就是当我们调用 new operator 分配内存时,有一个 size 参数表明需要分配多大的内存。但是当调用 delete operator 时,却没有类似的参数,那么 delete operator 如何能够知道需要释放该指针指向的内存块的大小呢?答案是:对于系统自有的数据类型,语言本身就能区分内存块的大小,而对于自定义数据类型(如我们自定义的类),则 operator new 和 operator delete 之间需要互相传递信息。
当我们使用 operator new 为一个自定义类型对象分配内存时,实际上我们得到的内存要比实际对象的内存大一些,这些内存除了要存储对象数据外,还需要记录这片内存的大小,此方法称为 cookie。这一点上的实现依据不同的编译器不同。(例如 MFC 选择在所分配内存的头部存储对象实际数据,而后面的部分存储边界标志和内存大小信息。g++ 则采用在所分配内存的头 4 个自己存储相关信息,而后面的内存存储对象实际数据。)当我们使用 delete operator 进行内存释放操作时,delete operator 就可以根据这些信息正确的释放指针所指向的内存块。
以上论述的是对于单个对象的内存分配/释放,当我们为数组分配/释放内存时,虽然我们仍然使用 new operator 和 delete operator,但是其内部行为却有不同:new operator 调用了operator new 的数组版的兄弟- operator new[],而后针对每一个数组成员调用构造函数。而 delete operator 先对每一个数组成员调用析构函数,而后调用 operator delete[] 来释放内存。需要注意的是,当我们创建或释放由自定义数据类型所构成的数组时,编译器为了能够标识出在 operator delete[] 中所需释放的内存块的大小,也使用了编译器相关的 cookie 技术。
综上所述,如果我们想检测内存泄漏,就必须对程序中的内存分配和释放情况进行记录和分析,也就是说我们需要重载 operator new/operator new[];operator delete/operator delete[] 四个全局函数,以截获我们所需检验的内存操作信息。






回页首



3.内存检测的基本实现原理
上文提到要想检测内存泄漏,就必须对程序中的内存分配和释放情况进行记录,所能够采取的办法就是重载所有形式的operator new 和 operator delete,截获 new operator 和 delete operator 执行过程中的内存操作信息。下面列出的就是重载形式
void* operator new( size_t nSize, char* pszFileName, int nLineNum )
void* operator new[]( size_t nSize, char* pszFileName, int nLineNum )
void operator delete( void *ptr )
void operator delete[]( void *ptr )

我们为 operator new 定义了一个新的版本,除了必须的 size_t nSize 参数外,还增加了文件名和行号,这里的文件名和行号就是这次 new operator 操作符被调用时所在的文件名和行号,这个信息将在发现内存泄漏时输出,以帮助用户定位泄漏具体位置。对于 operator delete,因为无法为之定义新的版本,我们直接覆盖了全局的 operator delete 的两个版本。
在重载的 operator new 函数版本中,我们将调用全局的 operator new 的相应的版本并将相应的 size_t 参数传入,而后,我们将全局 operator new 返回的指针值以及该次分配所在的文件名和行号信息记录下来,这里所采用的数据结构是一个 STL 的 map,以指针值为 key 值。当 operator delete 被调用时,如果调用方式正确的话(调用方式不正确的情况将在后面详细描述),我们就能以传入的指针值在 map 中找到相应的数据项并将之删除,而后调用 free 将指针所指向的内存块释放。当程序退出的时候,map 中的剩余的数据项就是我们企图检测的内存泄漏信息--已经在堆上分配但是尚未释放的分配信息。
以上就是内存检测实现的基本原理,现在还有两个基本问题没有解决:
1) 如何取得内存分配代码所在的文件名和行号,并让 new operator 将之传递给我们重载的 operator new。
2) 我们何时创建用于存储内存数据的 map 数据结构,如何管理,何时打印内存泄漏信息。
先解决问题1。首先我们可以利用 C 的预编译宏 __FILE__ 和 __LINE__,这两个宏将在编译时在指定位置展开为该文件的文件名和该行的行号。而后我们需要将缺省的全局 new operator 替换为我们自定义的能够传入文件名和行号的版本,我们在子系统头文件 MemRecord.h 中定义:
#define DEBUG_NEW new(__FILE__, __LINE__ )

而后在所有需要使用内存检测的客户程序的所有的 cpp 文件的开头加入
#include "MemRecord.h"
#define new DEBUG_NEW

就可以将客户源文件中的对于全局缺省的 new operator 的调用替换为 new (__FILE__,__LINE__) 调用,而该形式的new operator将调用我们的operator new (size_t nSize, char* pszFileName, int nLineNum),其中 nSize 是由 new operator 计算并传入的,而 new 调用点的文件名和行号是由我们自定义版本的 new operator 传入的。我们建议在所有用户自己的源代码文件中都加入上述宏,如果有的文件中使用内存检测子系统而有的没有,则子系统将可能因无法监控整个系统而输出一些泄漏警告。
再说第二个问题。我们用于管理客户信息的这个 map 必须在客户程序第一次调用 new operator 或者 delete operator 之前被创建,而且在最后一个 new operator 和 delete operator 调用之后进行泄漏信息的打印,也就是说它需要先于客户程序而出生,而在客户程序退出之后进行分析。能够包容客户程序生命周期的确有一人--全局对象(appMemory)。我们可以设计一个类来封装这个 map 以及这对它的插入删除操作,然后构造这个类的一个全局对象(appMemory),在全局对象(appMemory)的构造函数中创建并初始化这个数据结构,而在其析构函数中对数据结构中剩余数据进行分析和输出。Operator new 中将调用这个全局对象(appMemory)的 insert 接口将指针、文件名、行号、内存块大小等信息以指针值为 key 记录到 map 中,在 operator delete 中调用 erase 接口将对应指针值的 map 中的数据项删除,注意不要忘了对 map 的访问需要进行互斥同步,因为同一时间可能会有多个线程进行堆上的内存操作。
好啦,内存检测的基本功能已经具备了。但是不要忘了,我们为了检测内存泄漏,在全局的 operator new 增加了一层间接性,同时为了保证对数据结构的安全访问增加了互斥,这些都会降低程序运行的效率。因此我们需要让用户能够方便的 enable 和 disable 这个内存检测功能,毕竟内存泄漏的检测应该在程序的调试和测试阶段完成。我们可以使用条件编译的特性,在用户被检测文件中使用如下宏定义:
#include "MemRecord.h"
#if defined( MEM_DEBUG )
#define new DEBUG_NEW
#endif

当用户需要使用内存检测时,可以使用如下命令对被检测文件进行编译
g++ -c -DMEM_DEBUG xxxxxx.cpp

就可以 enable 内存检测功能,而用户程序正式发布时,可以去掉 -DMEM_DEBUG 编译开关来 disable 内存检测功能,消除内存检测带来的效率影响。
图2所示为使用内存检测功能后,内存泄漏代码的执行以及检测结果

图2






回页首



4.错误方式删除带来的问题
以上我们已经构建了一个具备基本内存泄漏检测功能的子系统,下面让我们来看一下关于内存泄漏方面的一些稍微高级一点的话题。
首先,在我们编制 c++ 应用时,有时需要在堆上创建单个对象,有时则需要创建对象的数组。关于 new 和 delete 原理的叙述我们可以知道,对于单个对象和对象数组来说,内存分配和删除的动作是大不相同的,我们应该总是正确的使用彼此搭配的 new 和 delete 形式。但是在某些情况下,我们很容易犯错误,比如如下代码:
                class Test {};
                ……
                Test* pAry = new Test[10];//创建了一个拥有 10 个 Test 对象的数组
                Test* pObj = new Test;//创建了一个单对象
                ……
                delete []pObj;//本应使用单对象形式 delete pObj 进行内存释放,却错误的使用了数
//组形式
                delete pAry;//本应使用数组形式 delete []pAry 进行内存释放,却错误的使用了单对
//象的形式

不匹配的 new 和 delete 会导致什么问题呢?C++ 标准对此的解答是"未定义",就是说没有人向你保证会发生什么,但是有一点可以肯定:大多不是好事情--在某些编译器形成的代码中,程序可能会崩溃,而另外一些编译器形成的代码中,程序运行可能毫无问题,但是可能导致内存泄漏。
既然知道形式不匹配的 new 和 delete 会带来的问题,我们就需要对这种现象进行毫不留情的揭露,毕竟我们重载了所有形式的内存操作 operator new,operator new[],operator delete,operator delete[]。
我们首先想到的是,当用户调用特定方式(单对象或者数组方式)的 operator new 来分配内存时,我们可以在指向该内存的指针相关的数据结构中,增加一项用于描述其分配方式。当用户调用不同形式的 operator delete 的时候,我们在 map 中找到与该指针相对应的数据结构,然后比较分配方式和释放方式是否匹配,匹配则在 map 中正常删除该数据结构,不匹配则将该数据结构转移到一个所谓 "ErrorDelete" 的 list 中,在程序最终退出的时候和内存泄漏信息一起打印。
上面这种方法是最顺理成章的,但是在实际应用中效果却不好。原因有两个,第一个原因我们上面已经提到了:当 new 和 delete 形式不匹配时,其结果"未定义"。如果我们运气实在太差--程序在执行不匹配的 delete 时崩溃了,我们的全局对象(appMemory)中存储的数据也将不复存在,不会打印出任何信息。第二个原因与编译器相关,前面提到过,当编译器处理自定义数据类型或者自定义数据类型数组的 new 和 delete 操作符的时候,通常使用编译器相关的 cookie 技术。这种 cookie 技术在编译器中可能的实现方式是:new operator 先计算容纳所有对象所需的内存大小,而后再加上它为记录 cookie 所需要的内存量,再将总容量传给operator new 进行内存分配。当 operator new 返回所需的内存块后,new operator 将在调用相应次数的构造函数初始化有效数据的同时,记录 cookie 信息。而后将指向有效数据的指针返回给用户。也就是说我们重载的 operator new 所申请到并记录下来的指针与 new operator 返回给调用者的指针不一定一致(图3)。当调用者将 new operator 返回的指针传给 delete operator 进行内存释放时,如果其调用形式相匹配,则相应形式的 delete operator 会作出相反的处理,即调用相应次数的析构函数,再通过指向有效数据的指针位置找出包含 cookie 的整块内存地址,并将其传给 operator delete 释放内存。如果调用形式不匹配,delete operator 就不会做上述运算,而直接将指向有效数据的指针(而不是真正指向整块内存的指针)传入 operator delete。因为我们在 operator new 中记录的是我们所分配的整块内存的指针,而现在传入 operator delete 的却不是,所以就无法在全局对象(appMemory)所记录的数据中找到相应的内存分配信息。

图3
综上所述,当 new 和 delete 的调用形式不匹配时,由于程序有可能崩溃或者内存子系统找不到相应的内存分配信息,在程序最终打印出 "ErrorDelete" 的方式只能检测到某些"幸运"的不匹配现象。但我们总得做点儿什么,不能让这种危害极大的错误从我们眼前溜走,既然不能秋后算帐,我们就实时输出一个 warning 信息来提醒用户。什么时候抛出一个 warning 呢?很简单,当我们发现在 operator delete 或 operator delete[] 被调用的时候,我们无法在全局对象(appMemory)的 map 中找到与传入的指针值相对应的内存分配信息,我们就认为应该提醒用户。
既然决定要输出warning信息,那么现在的问题就是:我们如何描述我们的warning信息才能更便于用户定位到不匹配删除错误呢?答案:在 warning 信息中打印本次 delete 调用的文件名和行号信息。这可有点困难了,因为对于 operator delete 我们不能向对象 operator new 一样做出一个带附加信息的重载版本,我们只能在保持其接口原貌的情况下,重新定义其实现,所以我们的 operator delete 中能够得到的输入只有指针值。在 new/delete 调用形式不匹配的情况下,我们很有可能无法在全局对象(appMemory)的 map 中找到原来的 new 调用的分配信息。怎么办呢?万不得已,只好使用全局变量了。我们在检测子系统的实现文件中定义了两个全局变量(DELETE_FILE,DELETE_LINE)记录 operator delete 被调用时的文件名和行号,同时为了保证并发的 delete 操作对这两个变量访问同步,还使用了一个 mutex(至于为什么是 CCommonMutex 而不是一个 pthread_mutex_t,在"实现上的问题"一节会详细论述,在这里它的作用就是一个 mutex)。
char DELETE_FILE[ FILENAME_LENGTH ] = {0};
int DELETE_LINE = 0;
CCommonMutex globalLock;

而后,在我们的检测子系统的头文件中定义了如下形式的 DEBUG_DELETE
                        extern char DELETE_FILE[ FILENAME_LENGTH ];
extern int DELETE_LINE;
extern CCommonMutex globalLock;//在后面解释
#define DEBUG_DELETE         globalLock.Lock(); \
                        if (DELETE_LINE != 0) BuildStack();\ (//见第六节解释)
                        strncpy( DELETE_FILE, __FILE__,FILENAME_LENGTH - 1 );\
                        DELETE_FILE[ FILENAME_LENGTH - 1 ]= '\0'; \
                        DELETE_LINE = __LINE__; \
                        delete
                       

在用户被检测文件中原来的宏定义中添加一条:
#include "MemRecord.h"
#if defined( MEM_DEBUG )
#define new DEBUG_NEW
#define delete DEBUG_DELETE
#endif

这样,在用户被检测文件调用 delete operator 之前,将先获得互斥锁,然后使用调用点文件名和行号对相应的全局变量(DELETE_FILE,DELETE_LINE)进行赋值,而后调用 delete operator。当 delete operator 最终调用我们定义的 operator delete 的时候,在获得此次调用的文件名和行号信息后,对文件名和行号全局变量(DELETE_FILE,DELETE_LINE)重新初始化并打开互斥锁,让下一个挂在互斥锁上的 delete operator 得以执行。
在对 delete operator 作出如上修改以后,当我们发现无法经由 delete operator 传入的指针找到对应的内存分配信息的时候,就打印包括该次调用的文件名和行号的 warning。
天下没有十全十美的事情,既然我们提供了一种针对错误方式删除的提醒方法,我们就需要考虑以下几种异常情况:
1. 用户使用的第三方库函数中有内存分配和释放操作。或者用户的被检测进程中进行内存分配和释放的实现文件没有使用我们的宏定义。由于我们替换了全局的 operator delete,这种情况下的用户调用的 delete 也会被我们截获。用户并没有使用我们定义的DEBUG_NEW 宏,所以我们无法在我们的全局对象(appMemory)数据结构中找到对应的内存分配信息,但是由于它也没有使用DEBUG_DELETE,我们为 delete 定义的两个全局 DELETE_FILE 和 DELETE_LINE 都不会有值,因此可以不打印 warning。
2. 用户的一个实现文件调用了 new 进行内存分配工作,但是该文件并没有使用我们定义的 DEBUG_NEW 宏。同时用户的另一个实现文件中的代码负责调用 delete 来删除前者分配的内存,但不巧的是,这个文件使用了 DEBUG_DELETE 宏。这种情况下内存检测子系统会报告 warning,并打印出 delete 调用的文件名和行号。
3. 与第二种情况相反,用户的一个实现文件调用了 new 进行内存分配工作,并使用我们定义的 DEBUG_NEW 宏。同时用户的另一个实现文件中的代码负责调用 delete 来删除前者分配的内存,但该文件没有使用 DEBUG_DELETE 宏。这种情况下,因为我们能够找到这个内存分配的原始信息,所以不会打印 warning。
4. 当出现嵌套 delete(定义可见"实现上的问题")的情况下,以上第一和第三种情况都有可能打印出不正确的 warning 信息,详细分析可见"实现上的问题"一节。
你可能觉得这样的 warning 太随意了,有误导之嫌。怎么说呢?作为一个检测子系统,对待有可能的错误我们所采取的原则是:宁可误报,不可漏报。请大家"有则改之,无则加勉"。






回页首



5.动态内存泄漏信息的检测
上面我们所讲述的内存泄漏的检测能够在程序整个生命周期结束时,打印出在程序运行过程中已经在堆上分配但是没有释放的内存分配信息,程序员可以由此找到程序中"显式"的内存泄漏点并加以改正。但是如果程序在结束之前能够将自己所分配的所有内存都释放掉,是不是就可以说这个程序不存在内存泄漏呢?答案:否!在编程实践中,我们发现了另外两种危害性更大的"隐式"内存泄漏,其表现就是在程序退出时,没有任何内存泄漏的现象,但是在程序运行过程中,内存占用量却不断增加,直到使整个系统崩溃。
1. 程序的一个线程不断分配内存,并将指向内存的指针保存在一个数据存储中(如 list),但是在程序运行过程中,一直没有任何线程进行内存释放。当程序退出的时候,该数据存储中的指针值所指向的内存块被依次释放。
2. 程序的N个线程进行内存分配,并将指针传递给一个数据存储,由M个线程从数据存储进行数据处理和内存释放。由于 N 远大于M,或者M个线程数据处理的时间过长,导致内存分配的速度远大于内存被释放的速度。但是在程序退出的时候,数据存储中的指针值所指向的内存块被依次释放。
之所以说他危害性更大,是因为很不容易这种问题找出来,程序可能连续运行几个十几个小时没有问题,从而通过了不严密的系统测试。但是如果在实际环境中 7×24 小时运行,系统将不定时的崩溃,而且崩溃的原因从 log 和程序表象上都查不出原因。
为了将这种问题也挑落马下,我们增加了一个动态检测模块 MemSnapShot,用于在程序运行过程中,每隔一定的时间间隔就对程序当前的内存总使用情况和内存分配情况进行统计,以使用户能够对程序的动态内存分配状况进行监视。
当客户使用 MemSnapShot 进程监视一个运行中的进程时,被监视进程的内存子系统将把内存分配和释放的信息实时传送给MemSnapShot。MemSnapShot 则每隔一定的时间间隔就对所接收到的信息进行统计,计算该进程总的内存使用量,同时以调用new进行内存分配的文件名和行号为索引值,计算每个内存分配动作所分配而未释放的内存总量。这样一来,如果在连续多个时间间隔的统计结果中,如果某文件的某行所分配的内存总量不断增长而始终没有到达一个平衡点甚至回落,那它一定是我们上面所说到的两种问题之一。
在实现上,内存检测子系统的全局对象(appMemory)的构造函数中以自己的当前 PID 为基础 key 值创建一个消息队列,并在operator new 和 operator delete 被调用的时候将相应的信息写入消息队列。MemSnapShot 进程启动时需要输入被检测进程的 PID,而后通过该 PID 组装 key 值并找到被检测进程创建的消息队列,并开始读入消息队列中的数据进行分析统计。当得到operator new 的信息时,记录内存分配信息,当收到 operator delete 消息时,删除相应的内存分配信息。同时启动一个分析线程,每隔一定的时间间隔就计算一下当前的以分配而尚未释放的内存信息,并以内存的分配位置为关键字进行统计,查看在同一位置(相同文件名和行号)所分配的内存总量和其占进程总内存量的百分比。
图4 是一个正在运行的 MemSnapShot 程序,它所监视的进程的动态内存分配情况如图所示:

图四
在支持 MemSnapShot 过程中的实现上的唯一技巧是--对于被检测进程异常退出状况的处理。因为被检测进程中的内存检测子系统创建了用于进程间传输数据的消息队列,它是一个核心资源,其生命周期与内核相同,一旦创建,除非显式的进行删除或系统重启,否则将不被释放。
不错,我们可以在内存检测子系统中的全局对象(appMemory)的析构函数中完成对消息队列的删除,但是如果被检测进程非正常退出(CTRL+C,段错误崩溃等),消息队列可就没人管了。那么我们可以不可以在全局对象(appMemory)的构造函数中使用 signal 系统调用注册 SIGINT,SIGSEGV 等系统信号处理函数,并在处理函数中删除消息队列呢?还是不行,因为被检测进程完全有可能注册自己的对应的信号处理函数,这样就会替换我们的信号处理函数。最终我们采取的方法是利用 fork 产生一个孤儿进程,并利用这个进程监视被检测进程的生存状况,如果被检测进程已经退出(无论正常退出还是异常退出),则试图删除被检测进程所创建的消息队列。下面简述其实现原理:
在全局对象(appMemory)构造函数中,创建消息队列成功以后,我们调用 fork 创建一个子进程,而后该子进程再次调用 fork 创建孙子进程,并退出,从而使孙子进程变为一个"孤儿"进程(之所以使用孤儿进程是因为我们需要切断被检测进程与我们创建的进程之间的信号联系)。孙子进程利用父进程(被检测进程)的全局对象(appMemory)得到其 PID 和刚刚创建的消息队列的标识,并传递给调用 exec 函数产生的一个新的程序映象--MemCleaner。
MemCleaner 程序仅仅调用 kill(pid, 0);函数来查看被检测进程的生存状态,如果被检测进程不存在了(正常或者异常退出),则 kill 函数返回非 0 值,此时我们就动手清除可能存在的消息队列。






回页首



6.实现上的问题:嵌套delete
在"错误方式删除带来的问题"一节中,我们对 delete operator 动了个小手术--增加了两个全局变量(DELETE_FILE,DELETE_LINE)用于记录本次 delete 操作所在的文件名和行号,并且为了同步对全局变量(DELETE_FILE,DELETE_LINE)的访问,增加了一个全局的互斥锁。在一开始,我们使用的是 pthread_mutex_t,但是在测试中,我们发现 pthread_mutex_t 在本应用环境中的局限性。
例如如下代码:
                class B {…};
                        class A {
                        public:
                                A() {m_pB = NULL};
                                A(B* pb) {m_pB = pb;};
                                ~A()
                                {
                                       if (m_pB != NULL)
           行号1                                        delete m_pB;                //这句最要命
                                 };
                        private:
                                class B* m_pB;
                                ……
                        }
                int main()
                {
                        A* pA = new A(new B);
                        ……
          行号2                delete pA;               
                }

在上述代码中,main 函数中的一句 delete pA 我们称之为"嵌套删除",即我们 delete A 对象的时候,在A对象的析构执行了另一个 delete B 的动作。当用户使用我们的内存检测子系统时,delete pA 的动作应转化为以下动作:
                上全局锁
                全局变量(DELETE_FILE,DELETE_LINE)赋值为文件名和行号2
                delete operator A
                  调用~A()
                    上全局锁
                    全局变量(DELETE_FILE,DELETE_LINE)赋值为文件名和行号1
                    delete operator B
                      调用~B()
                      返回~B()
                      调用operator delete B
                        记录全局变量(DELETE_FILE,DELETE_LINE)值1并清除全局变量(DELETE_FILE,DELETE_LINE)值
                        打开全局锁
                    返回operator delete B
                返回delete operator B
             返回~A()
         调用 operator delete A
           记录全局变量(DELETE_FILE,DELETE_LINE)值1并清除全局变量(DELETE_FILE,DELETE_LINE)值
           打开全局锁
         返回operator delete A
      返回 delete operator A
       

在这一过程中,有两个技术问题,一个是 mutex 的可重入问题,一个是嵌套删除时 对全局变量(DELETE_FILE,DELETE_LINE)现场保护的问题。
所谓 mutex 的可重入问题,是指在同一个线程上下文中,连续对同一个 mutex 调用了多次 lock,然后连续调用了多次 unlock。这就是说我们的应用方式要求互斥锁有如下特性:
1. 要求在同一个线程上下文中,能够多次持有同一个互斥体。并且只有在同一线程上下文中调用相同次数的 unlock 才能放弃对互斥体的占有。
2. 对于不同线程上下文持有互斥体的企图,同一时间只有一个线程能够持有互斥体,并且只有在其释放互斥体之后,其他线程才能持有该互斥体。
Pthread_mutex_t 互斥体不具有以上特性,即使在同一上下文中,第二次调用 pthread_mutex_lock 将会挂起。因此,我们必须实现出自己的互斥体。在这里我们使用 semaphore 的特性实现了一个符合上述特性描述的互斥体 CCommonMutex(源代码见附件)。
为了支持特性 2,在这个 CCommonMutex 类中,封装了一个 semaphore,并在构造函数中令其资源值为 1,初始值为1。当调用 CCommonMutex::lock 接口时,调用 sem_wait 得到 semaphore,使信号量的资源为 0 从而让其他调用 lock 接口的线程挂起。当调用接口 CCommonMutex::unlock 时,调用 sem_post 使信号量资源恢复为 1,让其他挂起的线程中的一个持有信号量。
同时为了支持特性 1,在这个 CCommonMutex 增加了对于当前线程 pid 的判断和当前线程访问计数。当线程第一次调用 lock 接口时,我们调用 sem_wait 的同时,记录当前的 Pid 到成员变量 m_pid,并置访问计数为 1,同一线程(m_pid == getpid())其后的多次调用将只进行计数而不挂起。当调用 unlock 接口时,如果计数不为 1,则只需递减访问计数,直到递减访问计数为 1 才进行清除 pid、调用 sem_post。(具体代码可见附件)
嵌套删除时对全局变量(DELETE_FILE,DELETE_LINE)现场保护的问题是指,上述步骤中在 A 的析构函数中调用 delete m_pB 时,对全局变量(DELETE_FILE,DELETE_LINE)文件名和行号的赋值将覆盖主程序中调用 delete pA 时对全局变量(DELETE_FILE,DELETE_LINE)的赋值,造成了在执行 operator delete A 时,delete pA 的信息全部丢失。
要想对这些全局信息进行现场保护,最好用的就是堆栈了,在这里我们使用了 STL 提供的 stack 容器。在 DEBUG_DELETE 宏定义中,对全局变量(DELETE_FILE,DELETE_LINE)赋值之前,我们先判断是否前面已经有人对他们赋过值了--观察行号变量是否等于 0,如果不为 0,则应该将已有的信息压栈(调用一个全局函数 BuildStack() 将当前的全局文件名和行号数据压入一个全局堆栈globalStack),而后再对全局变量(DELETE_FILE,DELETE_LINE)赋值,再调用 delete operator。而在内存子系统的全局对象(appMemory)提供的 erase 接口里面,如果判断传入的文件名和行号为 0,则说明我们所需要的数据有可能被嵌套删除覆盖了,所以需要从堆栈中弹出相应的数据进行处理。
现在嵌套删除中的问题基本解决了,但是当嵌套删除与 "错误方式删除带来的问题"一节的最后所描述的第一和第三种异常情况同时出现的时候,由于用户的 delete 调用没有通过我们定义的 DEBUG_DELETE 宏,上述机制可能出现问题。其根本原因是我们利用stack 保留了经由我们的 DEBUG_DELETE 宏记录的 delete 信息的现场,以便在 operator delete 和全局对象(appMemory)的 erase 接口中使用,但是用户的没经过 DEBUG_DELETE 宏的 delete 操作却未曾进行压栈操作而直接调用了 operator delete,有可能将不属于这次操作的 delete 信息弹出,**了堆栈信息的顺序和有效性。那么,当我们因为无法找到这次及其后续的 delete 操作所对应的内存分配信息的时候,可能会打印出错误的 warning 信息。






回页首



展望
以上就是我们所实现的内存泄漏检测子系统的原理和技术方案,第一版的源代码在附件中,已经经过了较严格的系统测试。但是限于我们的 C++ 知识水平和编程功底,在实现过程中肯定还有没有注意到的地方甚至是缺陷,希望能够得到大家的指正,我的 email 是 hcode@21cn.com
在我们所实现的内存检测子系统基础上,可以继续搭建内存分配优化子系统,从而形成一个完整的内存子系统。一种内存分配优化子系统的实现方案是一次性分配大块的内存,并使用特定的数据结构管理之,当内存分配请求到来时,使用特定算法从这块大内存中划定所需的一块给用户使用,而用户使用完毕,在将其划为空闲内存。这种内存优化方式将内存分配释放转换为简单的数据处理,极大的减少了内存申请和释放所耗费的时间。

参考资料
1. 《More effective C++》Scott Meyers,候捷译
2. 《Effective c++》Scott Meyers,候捷译
3. 《深度探索C++对象模型》Stanley B.Lippman,候捷译
4. 《Unix环境高级编程》W.Richard Stevens,尤晋元等译
5. 源代码:检测子系统、动态内存监测、自定义的 mutex 类的源代码、简单的演示程序

论坛徽章:
3
天秤座
日期:2013-12-27 13:44:58射手座
日期:2014-05-22 16:52:43天蝎座
日期:2014-08-13 16:03:21
90 [报告]
发表于 2011-01-24 11:35 |只看该作者
本帖最后由 compare2000 于 2014-02-27 14:51 编辑

2006年初我开始担任W地区部无线工程管理经理,从工程师到工程管理经理经历了很大的角色转变,伴随着角色转变的问题蜂拥而至,其中最大的问题就是“拥塞”:一件事情没有处理完又来一件事情,有时一下子来好几个问题!

    头痛!心情差! 根本无法精心下来做事情!

    记得当时的主管看我心情很差,绩效也一般,就告诉我一个“好方法”:移形换位(也可以叫玩失踪)!也就是每天抽2-3小时改变办公位,坐到一个平常人找不到的座位,这样就可以安心地做自己的事情啦^_^。这个方法才开始使用觉得很有意思,也的确能够安静几个小时,可是时间长了就发现很多问题短时间的逃避反而使问题变得更紧急!

    这是我开始慢慢接触时间管理方面的知识,首先是学习了时间管理的通用理论,然后就按照四象限发来管理自己的工作,每天就那张纸画好四象限,先把重要紧急的事情处理掉,然后再做一些重要不紧急的工作。

    一段时间后觉得天天在纸上画四象限方法太笨了,并且纸面的东西不好管理,就开始使用其他的时间管理工具:

1、 便签条:在桌子上贴了1周左右,放弃了;

2、 电脑桌面软件:用1个月左右,放弃:有些要License,并且不能把日程导出为通用的excel等格式;

3、 同事推荐使用项目中用的问题跟踪表excel格式,用1周就放弃,管项目可以管日常日程不合适;

就这样煎熬了近3个月的时间。

心情的好转从我“发明”适合自己的时间管理表开始:在使用了很多现有的时间管理工具觉得不顺手后,我开始思考自己做一个工具,经过2周的摸索以及2周的实践后我制作出了一个非常简单好用的时间管理工具,见附件:


这个工具有以下几大好处:

1、 非常简单,2-3分钟掌握用法,不会因为做时间管理而浪费时间;

2、 非常便于长期使用(我从06年一直使用到现在),可以非常容易地查看自己以前的工作

3、 非常通用,就是使用Excel,不需要任何license

通过这个工具,我真正实现了:用工具管理时间,解放出脑子来思考问题,这个小小的工具帮助我克服了管理工作上工作纷繁复杂的难题,即使我的职位不断上升,即使工作越来越多我一样可以轻松应对,在这里与大家分享,希望对你也能够有所帮助。

系统性分析能力                三                四                五                六                日                一                二                三                四                五                六                日
带队能力                1                 2                 3                 4                 5                 6                 7                 8                 9                 10                 11                 12
        8                                                                                                                                                                                       
        8:30        审批工时        1                                                                                                                                                                       
        9                                                                                                                                                                                       
        9:30        XX项目人员安排        2                                                                                                                                                                       
        10                                                                                                                                                                                       
        10:30        XX客户会议        3                                                                                                                                                                       
        11                                                                                                                                                                                       
        11:30                                                                                                                                                                                       
        12                                                                                                                                                                                       
        12:30                                                                                                                                                                                       
        13                                                                                                                                                                                       
        13:30                                                                                                                                                                                       
        14                                                                                                                                                                                       
        14:30                                                                                                                                                                                       
        15                                                                                                                                                                                       
        15:30                                                                                                                                                                                       
        16                                                                                                                                                                                       
        16:30                                                                                                                                                                                       
        17                                                                                                                                                                                       
        17:30                                                                                                                                                                                       
        18                                                                                                                                                                                       
"本月:XXX万
"        18:30                                                                                                                                                                                       
        19                                                                                                                                                                                       
        19:30                                                                                                                                                                                       
        20                                                                                                                                                                                       
        20:30                                                                                                                                                                                       
        21                                                                                                                                                                                       
1        一个月一个表格                                                                       
2        每月只需要调整1号对应是星期几即可                                                                       
3        每天包含两列,第一列是工作事项简单描述(自己明白的一句话即可)                                                                       
        第二列是状态监控列,见右边描述                                                                       
                                                        描述后面一列是状态监控:输入数字后会自动显示颜色                       
                                                                               
                                                                               
                                                                               
                                                                               
                                                        1:(无色)表示完成                       
                                                                               
                                                                               
                                                                               
                                                        2:(粉红)未完成                       
                                                                               
                                                                               
                                                        3:(鲜红)特别重要 或者 需紧急处理                       
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
                只需要简单地记一句话(顺手在后面格子里面输入2,如果重要紧急则输入3),就能够把自己的工作、学习管理起来:当你完成后就把后面的数字改成1,没有完成的任务一直是显示红颜色的!                                                               
2.1        Ubuntu10.04_x86
sudo apt-get install autoconf automake \
libtool g++ g++-4.4 comerr-dev docbook-xml docbook-xsl doxygen python-libxml2 zip \
gettext libstdc++6-4.4-dev gconf2 texlive-base texlive-binaries libltdl-dev libncurses5-dev \
libreadline5-dev libxml2-dev zlib1g-dev patch ss-dev texinfo tcl8.4 portmap \
    x11proto-core-dev x11proto-xext-dev xtrans-dev libx11-dev libxcb1 libxext-dev libxinerama-dev \
    tex-common xutils-dev x11-xkb-utils libcap-dev libexpat1-dev rarian-compat groff-base time libacl1-dev \
    gawk xsltproc expect base-files bash bc binutils bsdmainutils bzip2 cdparanoia coreutils cpio cpp-4.4 \
    cups-bsd cups-client cvs debianutils desktop-file-utils diffutils dpkg e2fslibs ed file findutils fontconfig \
    gcc-4.4 gconf2 ghostscript gnupg grep gzip hostname imagemagick install-info less libasound2 libblkid1 \
    libc-bin libc-dev-bin libc6 libc6-dev libcap2 libcomerr2 libexpat1 libgcc1 libgl1-mesa-glx \
    libidn11 libkeyutils1 liblocale-gettext-perl libmagic1 libncurses5 libreadline5 libsensors4 \
    libss2 libstdc++6 libuuid1 libx11-6 libxau6 libxdmcp6 libxext-dev libxext6 libxml2-utils libxrandr2 \
    libxrender1 linux-headers-generic linux-libc-dev locales login lzma make man-db manpages-dev mawk \
    mlocate ncurses-base ncurses-bin net-tools ntpdate openssh-client passwd perl perl-base perl-modules \
    pkg-config procps python-apport python-gst0.10 python-imaging python-zope.interface python2.6 \
    python2.6-minimal rsync sed shared-mime-info sysv-rc sysvinit-utils tar tzdata udev unzip util-linux \
    x11-utils x11-xserver-utils x11proto-kb-dev xauth xfonts-encodings xfonts-utils xorg-docs-core \
    xterm zip zlib1g g++-multilib fakeroot subversion
对于 64位操作系统,需要安装 ia32-libs
sudo apt-get install ia32-libs
然后安装相关工具
sudo apt-get install autoconf automake \
    libtool g++ g++-4.4 gcc-4.4-multilib comerr-dev docbook-xml docbook-xsl doxygen python-libxml2 \
    zip gettext lib32gcc1 libc6-dev-i386 libc6-i386 libstdc++6-4.4-dev gconf2 texlive-base texlive-binaries \
    libltdl-dev libncurses5-dev lib32ncurses5-dev libreadline5-dev libxml2-dev zlib1g-dev patch \
    ss-dev texinfo tcl8.4 portmap x11proto-core-dev x11proto-xext-dev xtrans-dev libx11-dev libxcb1 \
    libxext-dev libxinerama-dev tex-common xutils-dev x11-xkb-utils libcap-dev libexpat1-dev rarian-compat \
    groff-base time libacl1-dev gawk xsltproc flex expect base-files bash bc binutils bsdmainutils \
    bzip2 cdparanoia coreutils cpio cpp-4.4 cups-bsd cups-client cvs debianutils desktop-file-utils \
    diffutils dpkg e2fslibs ed file findutils fontconfig gcc-4.4 gconf2 ghostscript gnupg grep gzip hostname \
    imagemagick install-info less libasound2 libblkid1 libc-bin libc-dev-bin libc6 libc6-dev libcap2 \
    libcomerr2 libdb4.8-dev libexpat1 libgcc1 libgl1-mesa-glx libidn11 libkeyutils1 liblocale-gettext-perl \
    libmagic1 libncurses5 libreadline5 libsensors4 libss2 libstdc++6 libuuid1 libx11-6 libxau6 libxdmcp6 \
    libxext-dev libxext6 libxml2-utils libxrandr2 libxrender1 linux-headers-generic linux-libc-dev \
    locales login lzma make man-db manpages-dev mawk mlocate ncurses-base ncurses-bin net-tools ntpdate \
    openssh-client passwd perl perl-base perl-modules pkg-config procps python-apport python-gst0.10 \
    python-imaging python-zope.interface python2.6 python2.6-minimal rsync sed shared-mime-info \
    sysv-rc sysvinit-utils tar tzdata udev unzip util-linux x11-utils x11-xserver-utils x11proto-kb-dev \
    xauth xfonts-encodings xfonts-utils xorg-docs-core xterm zip zlib1g g++-multilib fakeroot subversion
Dopra 的配置裁剪工具需要使用到该lib库,由于系统中已经存在新版的libstdc++6库文件,该库文件可以进行手工拷贝。
•        获取:\\10.136.28.243\public\tools\libstdc++5.tar.bz2
•        解压位置:将上述压缩包解压到编译环境主机的 /usr/lib32 目录
sudo tar –xf libstdc++5.tar.bz2 –C /usr/lib32
4.2        apt-get 工具代理服务器配置
apt-get 工具可以使用代理服务器下载相关软件包,使用该功能前确认有相关帐号可以访问外网。
•        配置文件位置:/etc/apt/apt.conf
•        参考配置:
Acquire::http::proxy "http://<account>:<password>@proxycn2.huawei.com:8080/";
Acquire::ftp::proxy "ftp://<account>:<password>@proxycn2.huawei.com:8080/";
Acquire::https::proxy "https://<account>:<password>@proxycn2.huawei.com:8080/";

替换其中的 <account> 和 <password> 为实际帐号和密码,注意:密码中不能有”:”和”@”,否则可能无法识别。
“@” 后面是代理服务器,请根据实际情况替换。
您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

  

北京盛拓优讯信息技术有限公司. 版权所有 京ICP备16024965号-6 北京市公安局海淀分局网监中心备案编号:11010802020122 niuxiaotong@pcpop.com 17352615567
未成年举报专区
中国互联网协会会员  联系我们:huangweiwei@itpub.net
感谢所有关心和支持过ChinaUnix的朋友们 转载本站内容请注明原作者名及出处

清除 Cookies - ChinaUnix - Archiver - WAP - TOP