- 论坛徽章:
- 0
|
第一部分为处理器的类型,其中Processor(处理器)为AMD Athlon XP CPU;Platform(封裝)是 Scoket 462插脚;Vendor String(厂商)为AMD;Family、Model、Stepping ID组成系列号,可以用来识别 CPU的型号;Name String(名称)为AMD的Athlon系列CPU。
第二部分为处理器的频率参数。其中Internal Clock即CPU的主频,可以看到这款CPU的主频为 2079.54MHz,即2.0G;System Bus即前端总线,这款为332.73,并非标准的前端总线,因此是超了外频的CPU;System Clock即外 频,即为166.36MHz,是超了外频的CPU; Multiplier即倍频,这款CPU的倍频为12.5。
第三部分为处理器的缓存情况。L1 I-Cache:L1 I-缓存,这款CPU为64k;L1 D-Cache:L1 D-缓存 ,同样为64K;L2 Cache:L2 缓存,这款CPU的L2 缓存达到256K;L2 Speed:L2 速度,和CPU的主频一样。
第四部分为处理器所支持的多媒体扩展指令集,可以看到这款CPU所支持的指令集有MMX、MMX+、SSE 、3DNOW!、3DNOW!+,但是不支持SSE2指令。
9.指令集
(1)X86指令集
要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU (i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是 X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集 统称为X86指令集。
虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的四核系列,但 为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所 生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。
(2)RISC指令集
RISC指令集是以后高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指 令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。而且RISC指 令集还兼容原来的X86指令集。
10.字长
电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为 8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。 当前的CPU都是32位的CPU,但是字长的最佳是CPU发展的一个趋势。AMD未来将推出64位的CPU- Atlon64。未来必然是64位CPU的天下。
11.IA-32、IA-64架构
IA是Intel Architecture(英特尔体系结构)的英语缩写,IA-32或IA-64是指符合英特尔结构字长为32或64位的 CPU,其他公司所生产的与Intel产品相兼容的CPU也包括在这一范畴。当前市场上所有的X86系列CPU 仍属IA-32架构。AMD推出Athlon64是IA-64架构的CPU。
12.流水线与超流水线
流水线(pipeline)是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配 流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5 —6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU 的运算速度。
超流水线(superpiplined)是指某型CPU内部的流水线超过通常的5—6步以上,例如Pentium pro的流水线就长达14步。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应 工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算 速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性 能却远远比不上AMD 1.2G的速龙甚至奔腾III。
13.封装形式
CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后 CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采 用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array) 、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。
32和64的区别
CPU : 什么是64位技术
64位技术:这里的64位技术是相对于32位而言的,这个位数指的是CPU GPRs(General-Purpose Registers,通用寄存器)的数据宽度为64位,64位指令集就是运行64位数据的指令,也就是说处理 器一次可以运行64bit数据。64bit处理器并非现在才有的,在高端的RISC(Reduced Instruction Set Computing,精简指令集计算机)很早就有64bit处理器了,比如SUN公司的 UltraSparc Ⅲ、IBM公司的POWER5、HP公司的Alpha等。
64bit计算主要有两大优点:可以进行更大范围的整数运算;可以支持更大的内存。不能因为数字上 的变化,而简单的认为64bit处理器的性能是32bit处理器性能的两倍。实际上在32bit应用下, 32bit处理器的性能甚至会更强,即使是64bit处理器,目前情况下也是在32bit应用下性能更强。所 以要认清64bit处理器的优势,但不可迷信64bit。
要实现真正意义上的64位计算,光有64位的处理器是不行的,还必须得有64位的操作系统以及64位 的应用软件才行,三者缺一不可,缺少其中任何一种要素都是无法实现64位计算的。目前,在64位 处理器方面,Intel和AMD两大处理器厂商都发布了多个系列多种规格的64位处理器;而在操作系统 和应用软件方面,目前的情况不容乐观。因为真正适合于个人使用的64位操作系统现在就只有 Windows XP X64,服务器版Windows 2003 serverR2本身也只是一个过渡性质的64位操作系统,在Windows Vista在真正64位系统,服务器版: Windows Server (Code Name "Longhorn")发布以后Windows 2003 server R2就将被淘汰 ,而且Windows XP X64, Windows 2003 serverR2本身也不太完善,易用性不高,一个明显的例子就是各种硬件设备的驱动程序很不完善, 而且现在64位的应用软件还基本还相对少,确实硬件厂商和软件厂商也不愿意去为一个过渡性质的 操作系统编写驱动程序和应用软件。所以要想实现真正的64位计算,只用Windows Vista,服务版代新的系统发布。
目前主流CPU使用的64位技术主要有AMD公司的AMD64位技术、Intel公司的EM64T技术、和Intel公司 的IA-64技术。其中IA-64是Intel独立开发,不兼容现在的传统的32位计算机,仅用于Itanium(安 腾)以及后续产品Itanium 2,一般用户不会涉及到,因此这里仅对AMD64位技术和Intel的EM64T技术做一下简单介绍。
AMD64位技术X86-64:
AMD64的位技术是在原始32位X86指令集的基础上加入了X86-64扩展64位X86指令集,使这款芯片在硬 件上兼容原来的32位X86软件,并同时支持X86-64的扩展64位计算,使得这款芯片成为真正的64位 X86芯片。这是一个真正的64位的标准,X86-64具有64位的寻址能力。
X86-64新增的几组CPU寄存器将提供更快的执行效率。寄存器是CPU内部用来创建和储存CPU运算结果 和其它运算结果的地方。标准的32-bit x86架构包括8个通用寄存器(GPR),AMD在X86-64中又增加了8组(R8-R9),将寄存器的数目提高 到了16组。X86-64寄存器默认位64-bit。还增加了8组128-bit XMM寄存器(也叫SSE寄存器,XMM8-XMM15),将能给单指令多数据流技术(SIMD)运算提供更多的 空间,这些128位的寄存器将提供在矢量和标量计算模式下进行128位双精度处理,为3D建模、矢量 分析和虚拟现实的实现提供了硬件基础。通过提供了更多的寄存器,按照X86-64标准生产的CPU可以 更有效的处理数据,可以在一个时钟周期中传输更多的信息。
要实现真正意义上的64位计算,光有64位的处理器还是不行的,还必须得有64位的操作系统以及64 位的应用软件才行,三者缺一不可,缺少其中任何一种要素都是无法实现64位计算的,
简单来说: 64位的内存寻址比32位的大了好多,是以tb计算的,而32位知有几gb的内存寻址,指令集每 秒责行的数据会比32位的强大好多,当然前提是要在64位系统的配合下,加上64 位的软件 注:1024gb=1tb
实际上目前情况下在32bit应用下,32bit处理器的性能甚至会更强,即使是64bit处理器,目前情况 下也是在32bit应用下性能更强,
什么是双核处理器?
所谓双核心处理器,简单地说就是在一块CPU基板上集成两个处理器核心,并通过并行总线将各处理 器核心连接起来。双核心并不是一个新概念,而只是CMP(Chip Multi Processors,单芯片多处理器)中最基本、最简单、最容易实现的一种类型。其实在RISC处理器领域 ,双核心甚至多核心都早已经实现。CMP最早是由美国斯坦福大学提出的,其思想是在一块芯片内实 现SMP(Symmetrical Multi-Processing,对称多处理)架构,且并行执行不同的进程。早在上个世纪末,惠普和IBM就已 经提出双核处理器的可行性设计。IBM在2001年就推出了基于双核心的POWER4处理器,随后是Sun和 惠普公司,都先后推出了基于双核架构的UltraSPARC以及PA-RISC芯片,但此时双核心处理器架构还 都是在高端的RISC领域,直到前不久Intel和AMD相继推出自己的双核心处理器,双核心才真正走入 了主流的X86领域。
Intel双核心处理器的简介
Intel目前的桌面平台双核心处理器代号为Smithfield,基本上可以简单看作是把两个Pentium 4所采用的Prescott核心整合在同一个处理器内部,两个核心共享前端总线,每个核心都拥有独立的 1MB二级缓存,两个核心加起来一共拥有2MB,但这显然与Pentium 4 6XX系列处理器的2MB缓存不同。但由于处理器中的两个内核都拥有独立的缓存,因此必须保证每个 物理内核的缓存信息必须保持一致,否则就会出现运算错误。例如在系统的内存数据区记录着A=1 ;如果第一个处理器内核对此数据区进行读写操作,并且改写为A=0,那么第二个处理器内核的缓 存也必须进行更新,把A更新为0,否则的话,在以后的操作中数据就会出错。这样一个过程就是缓 存数据的一致性,也就是说双核心处理器需要"仲裁器"来作协调。针对这个问题,Intel 将这个协调工作交给了北桥芯片(MCH或GMCH):两个核心需要同步更新处理器内缓存的数据时,需要 通过前端总线再通过北桥作更新。虽然缓存的数据并不巨大,但由于需要通过北桥作出处理,无疑 会带来一定的延迟,核心之间的通信就会变得缓慢,这将大大影响处理器性能的发挥。
Intel目前的桌面平台双核心处理器产品分为Pentium D和Pentium Extreme Edition(Pentium EE)两 大系列,Pentium D与Pentium EE都采用0.065微米制程,LGA775接口;它们最主要的区别就是Pentium EE支持超线程 技术,而Pentium D则不支持超线程技术,也就是说在打开超线程技术的情况下Pentium EE将被操作系统识别为四颗处 理器。
AMD双核心处理器的简介
AMD目前的桌面平台双核心处理器代号为Toledo和Manchester,基本上可以简单看作是把两个Athlon 64所采用的Venice核心整合在同一个处理器内部,每个核心都拥有独立的512KB或1MB二级缓存,两 个核心共享Hyper Transport,从架构上来说相对于目前的Athlon 64架构并没有任何改变。但与Intel的双核心处理器 不同的是,由于AMD的Athlon 64处理器内部整和了内存控制器,而且在当初Athlon 64设计时就为双核心做了考虑,但是仍然需要 仲裁器来保证其缓存数据的一致性。AMD在此采用了SRQ(System Request Queue,系统请求队列)技术,在工作的时候每一个核心都将其请求放在SRQ中,当获得资源 之后请求将会被送往相应的执行核心,所以其缓存数据的一致性不需要通过北桥芯片,直接在处理 器内部就可以完成。与Intel的双核心处理器相比,其优点是缓存数据延迟得以大大降低。
AMD目前的桌面平台双核心处理器是Athlon 64 X2,其型号按照PR值分为3800+至4800+等几种,同样 采用0.09微米制程,Socket 939接口,支持1GHz的Hyper Transport,当然也都支持双通道DDR内存技术。
由于AMD双核心处理器的仲裁器是在CPU内部而不是在北桥芯片上,所以在主板芯片组的选择上要比 Intel双核心处理器要宽松得多,甚至可以说与主板芯片组无关。理论上来说,任何Socket 939的主板通过更新BIOS都可以支持Athlon 64 X2。对普通消费者而言,这样可以保护已有的投资, 而不必象Intel双核心处理器那样需要同时升级主板。
双核和单核的区别
双核处理器是说两个处理核心被集成到了一块芯片上了,但即使说是双核,在处理性能上也是有很 大差别的,因为这要看那两个处理核心的构架方式。比如最初的双核是相互独立的,分用缓存,两 个处理核心之间不能实现相互的信息的共享,相对来说处理性能并不是很高,但现在最新的双核心 处理器是共用缓存的,两个处理核心之间能够实现信息交流,处理能力和速度要好的多,他的处理 频率也不可以与现在单核的处理器做简单的相比,比如双核的2.4G与单核的2.8G相比,双核的2.4G 的处理能力要强的多;即是一个CPU拥有两个CPU的性能,可这样简单理解。
多核体系结构和超线程技术(HT Technology)有何区别?
超线程技术只使用单核,更有效地利用现有执行资源来更好地启用线程,而多核功能提供两套完整 的执行资源来提高计算能力。在基于英特尔多核处理器的系统上运行时,任何拥有超线程技术的应 用程序都会提供卓越的性能。相应地,用户能够利用很多现有的应用程序,这些程序已经为早期英 特尔处理器到多核处理器的过渡在台式机、笔记本电脑和服务器处理器产品系列方面做好了双线程 优化。
多核处理器的基本原理
多核处理器运用功率和频率之间的基本关系原理。通 过将多个内核整合在一起,每个内核能够在较 低的频 率下运行,从而各个单内核的功耗下降而且分摊到多 个内核上。由此得到的结果就是性能大幅超过单核处 理器。以下图表基于我们在实验室中使用常见 工作负 载所得到的实验结果,这些数据充分表现了该技术的 主要优势:以主频升降为主导的性能提升和降低的关系
![]()
表 1:时钟频率增加 20%(tc),单核性能提高 13%, 但需要增加 73% 的功耗。相反的,降低 20% 的时钟频 率可以相应减少 49% 的功耗,但也会造成 13% 的性能 损失。
![]()
表 2:以表 1 中的降频为例,增加第二个内核,就得到一 个双核处理器。降低 20% 的时钟频率, 可有效提升 73% 的性能,而功耗则相当于最大频率时的单核处理器。
这种功耗和频率的基本对应关系能够有效用于增加内核的数目,从两个到四个,到八个甚至更多, 这样就 能在不增加功耗的情况下不断提高性能。不过,要想 实现这一切还需要做出许多改进。只有像英特尔这类 拥有雄厚实力的公司才能做到。
这些改进包括:
• 不断改进芯片制程(从 65 纳米到 45 纳米再到 32 纳 米),增加晶体管密度。此外,英 特尔致力于继续推 出具有高能效表现的晶体管。
• 提高每个内核的性能并针对多核进行优化,大约每两 年就推出一款新改进的微体系结构。
• 改进内存子系统,优化数据访问能力,确保数据在所 有内核之间得到快速、流畅的使用。 从而最大限度地 降低延迟,并提高效率和速度。
• 优化连接各内核的互连架构,提高内核和内存单元之 间的性能等等…..。
Intel 产品比较 |
|