- 论坛徽章:
- 0
|

不会吧,flw 兄你翻译了这么多 perl 文档,而且力求信、雅、达。怎么会看不懂呢? 先此声明,我的翻译是很水的,凑合看吧。
All horses are the same color, we can prove this by induction on the number of horses in a given set. Here's how:``If there's just one horse then it's the smae color as itself, so the basis is trivial. For the induction step, assume that there are n horses numbered 1 to n. By the induction hypothesis, horses 1 through n-1 are the same color, and similarly horses 2 through n are the same color. But the middle horses, 2 through n-1, can't change color when they're in different groups; these are horses, not chameleons. So horses 1 and n must be the same color as well, by transitivity. Thus all n horses are the same color, QED.'' What if anything, is wrong with this reasoning ?
所有的马的颜色都是一样的,可以对马的数量进行数学归纳法来证明它。方法如下:
“起点很简单,如果只有一匹马,当然是同一种颜色的。现在进行归纳,假定现在有 n 匹马,编号为1到 n。 根据归纳假设,1 号马到 n-1 号马是同色的,类似地,2号马到 n 号马是同色的。不过,中间的马,从 2号到 n-1 号,在前面两种分组过程中,不可能改变颜色;它们是马,不是变色龙。 根据传递性,1号马到 n 号马是同色的。因此 n 匹马是同色的, 证明完毕。”
请说明推理的错误,如果有的话。 |
|